
asciimatics Documentation
Release 1.13.1

Peter Brittain

Apr 23, 2022

Contents

1 Introduction 3
1.1 Why? . 3
1.2 Installation . 4
1.3 Quick start guide . 4

2 Contributing 5
2.1 Getting started . 5
2.2 Building The Documentation . 5
2.3 Running The Tests . 6

3 Basic Input/Output 7
3.1 Creating a Screen . 7
3.2 Output . 8
3.3 Refreshing the Screen . 9
3.4 Input . 10
3.5 Screen Resizing . 11
3.6 Scraping Text . 11
3.7 Drawing shapes . 11
3.8 Unicode drawing . 12

4 Advanced Output 13
4.1 Rendering . 13
4.2 Static colour codes . 14
4.3 Experimental . 15

5 Animation 17
5.1 Scenes and Effects . 17
5.2 Timing Effects . 17
5.3 Sprites and Paths . 18
5.4 Particle Systems . 18
5.5 CPU Considerations . 19
5.6 Using async frameworks . 19

6 User Interfaces 21
6.1 Introduction . 21
6.2 Model/View Design . 23
6.3 Displaying your UI . 26

i

6.4 Setting values . 31
6.5 Getting values . 31
6.6 Flow of control . 33
6.7 Data handling . 34
6.8 Dynamic scenes . 34
6.9 Custom widgets . 36

7 Troubleshooting 37
7.1 Installation issues . 37
7.2 My application only runs on Windows . 37
7.3 256 colours not working . 38
7.4 My colours are wrong . 38
7.5 The color theme resets when I resize the terminal . 39
7.6 Mouse support not working . 40
7.7 Windows title does not change . 40
7.8 Why can’t I detect all key combinations? . 40
7.9 Ctrl+S does not work . 40
7.10 Backspace or delete are not working . 41
7.11 There’s a big delay when I press Escape . 41
7.12 I can’t run it inside PyCharm or other IDEs . 41
7.13 It runs differently/does not work inside PyCharm . 41
7.14 Unicode characters are not working . 42
7.15 Redirecting STDIN . 42
7.16 It’s just not working at all . 42
7.17 It’s too slow! . 43

8 asciimatics 45
8.1 asciimatics package . 45

9 Indices and tables 167

Python Module Index 169

Index 171

ii

asciimatics Documentation, Release 1.13.1

Contents:

Contents 1

asciimatics Documentation, Release 1.13.1

2 Contents

CHAPTER 1

Introduction

Asciimatics is a package to help people create simple ASCII animations on any platform. It is licensed under the
Apache Software Foundation License 2.0.

1.1 Why?

Why not? It brings a little joy to anyone who was programming in the 80s. . . Oh and it provides a single cross-platform
Python class to do all the low-level console function you could ask for, including:

• Coloured/styled text - including 256 colour terminals

• Cursor positioning

• Keyboard input (without blocking or echoing)

• Mouse input (terminal permitting)

• Detecting and handling when the console resizes

• Screen scraping

In addition, it provides some simple, high-level APIs to provide more complex features including:

• Anti-aliased ASCII line-drawing

• Image to ASCII conversion - including JPEG and GIF formats

• Many animation effects - e.g. sprites, particle systems, banners, etc.

• Various widgets for text UIs - e.g. buttons, text boxes, radio buttons, etc.

Currently this API has been proven to work on CentOS 6 & 7, Raspbian (i.e. Debian wheezy), Ubuntu 14.04, Win-
dows 7, 8 & 10 and OSX 10.11, though it should also work for any other platform that provides a working curses
implementation.

3

asciimatics Documentation, Release 1.13.1

1.2 Installation

Asciimatics supports Python versions 2 & 3. For a list of the precise list of tested versions, see here.

To install asciimatics, simply install with pip. You can get it from here and then just run:

$ pip install asciimatics

This should install all your dependencies for you. If you don’t use pip or it fails to install them, you can install the
dependencies directly using the packages listed in requirements.txt. Additionally, Windows users will need to install
pywin32.

1.3 Quick start guide

Once you have installed asciimatics as per the instructions above, simply create a Screen, put together a Scene
using some Effect objects and then get the Screen to play it. An Effect will typically need to display some pre-
formatted text. This is usually provided by a Renderer. For example:

from asciimatics.screen import Screen
from asciimatics.scene import Scene
from asciimatics.effects import Cycle, Stars
from asciimatics.renderers import FigletText

def demo(screen):
effects = [

Cycle(
screen,
FigletText("ASCIIMATICS", font='big'),
screen.height // 2 - 8),

Cycle(
screen,
FigletText("ROCKS!", font='big'),
screen.height // 2 + 3),

Stars(screen, (screen.width + screen.height) // 2)
]
screen.play([Scene(effects, 500)])

Screen.wrapper(demo)

4 Chapter 1. Introduction

https://pypi.python.org/pypi/asciimatics
http://pip.readthedocs.org/en/stable/installing/
https://github.com/peterbrittain/asciimatics/blob/master/requirements.txt

CHAPTER 2

Contributing

2.1 Getting started

So you want to join in? Great! There’s a few ground rules. . .

1. Before you do anything else, read up on the design.

• You should find all general background in these 4 classes: Screen, Scene, Effect and Renderer.

• You will find more details on TUIs in these 3 classes: Frame, Layout and Widget.

2. If writing a new Effect, consider why it can’t be handled by a combination of a new Renderer and the Print
Effect. For example, dynamic Effects such as Snow depend on the current Screen state to render each new
image.

3. Go the extra yard. This project started on a whim to share the joy of someone starting out programming back
in the 1980s. How do you sustain that joy? Not just by writing code that works, but by writing code that other
programmers will admire.

4. Make sure that your code is PEP-8 compliant. Tools such as flake8 and pylint or editors like pycharm really
help here.

5. Please run the existing unit tests against your new code to make sure that it still works as expected. I normally
use nosetests to do this. In addition, if you are adding significant extra function, please write some new tests for
your code.

If you’re not quite sure about something, feel free to join us at https://gitter.im/asciimatics/Lobby and share your ideas.

When you’ve got something you’re happy with, please feel free to submit a pull request at https://github.com/
peterbrittain/asciimatics/issues.

2.2 Building The Documentation

Install the dependencies and build the documentation with:

5

https://www.python.org/dev/peps/pep-0008/
https://gitter.im/asciimatics/Lobby
https://github.com/peterbrittain/asciimatics/issues
https://github.com/peterbrittain/asciimatics/issues

asciimatics Documentation, Release 1.13.1

$ pip install -r requirements/dev.txt
$ cd doc && cp source/conf_orig.py source/conf.py
$./build.sh

You can then view your new shiny documentation in the build folder.

2.3 Running The Tests

Install the dependencies and run the tests with the following:

$ pip install -r requirements/dev.txt
$ nosetests

On most systems this will avoid running tests that require a Linux TTY. If you are making changes to the Screen, you
must also run the TTY tests. You can force that on a Linux box using the following:

$ FORCE_TTY=Y nosetests

The reason for this split is that you only typically get a TTY on a live interactive connection to your terminal. This
means you should always be able to run the full suite manually. However, many CI systems do not provide a valid
TTY and so these tests regularly fail on various build servers. Fortunately, Travis provides a working TTY and so we
enable the full suite of tests on any check-in to master.

6 Chapter 2. Contributing

CHAPTER 3

Basic Input/Output

3.1 Creating a Screen

The starting point for any asciimatics program is the Screen object. It can most easily be obtained from the
wrapper() static method. This will handle all the necessary initialization for your environment and pass the con-
structed Screen into the specified function. For example:

from asciimatics.screen import Screen
from time import sleep

def demo(screen):
screen.print_at('Hello world!', 0, 0)
screen.refresh()
sleep(10)

Screen.wrapper(demo)

You can also use the ManagedScreen class as a function decorator to achieve the same thing as the above. For
example:

from asciimatics.screen import ManagedScreen
from asciimatics.scene import Scene
from asciimatics.effects import Cycle, Stars
from asciimatics.renderers import FigletText

@ManagedScreen
def demo(screen=None):

screen.print_at('Hello world!', 0, 0)
screen.refresh()
sleep(10)

demo()

Or you can also use it as a context manager (i.e. using the with keyword). For example:

7

asciimatics Documentation, Release 1.13.1

from asciimatics.screen import ManagedScreen
from asciimatics.scene import Scene
from asciimatics.effects import Cycle, Stars
from asciimatics.renderers import FigletText

def demo():
with ManagedScreen() as screen:

screen.print_at('Hello world!', 0, 0)
screen.refresh()
sleep(10)

demo()

If you need more control than this allows, you can fall back to using open(), but then you have to call close()
before exiting your application to restore the environment.

3.2 Output

Once you have a Screen, you probably want to ensure that it is clear before you do anything. To do this call clear().
Now that it’s blank, the simplest way to output text is using the print_at() method. This allows you to place a
string at a desired location in a specified colour. The coordinates are zero-indexed starting at the top left of the screen
and move down and right, so the example above displays Hello world! at (0, 0) which is the top left of the screen.

3.2.1 Colours

There is a long history to terminals and this is no more obvious than when it comes to colours. Original terminals had
limited colours, and so used attributes to change the format, using effects like bold, underline and reverse video. As
time wore on, more colours were added and you can get full 24 bit colour on some terminals.

For now, asciimatics limits itself to a maximum of the 256 colour palette. You can find how many colours your terminal
supports by looking at the colours property. These days most terminals will support a minimum of 8 colours. These
are defined by the COLOUR_xxx constants in the Screen class. The full list is as follows:

COLOUR_BLACK = 0
COLOUR_RED = 1
COLOUR_GREEN = 2
COLOUR_YELLOW = 3
COLOUR_BLUE = 4
COLOUR_MAGENTA = 5
COLOUR_CYAN = 6
COLOUR_WHITE = 7

These should always work for you as background and foreground colours (even on Windows). For many systems you
can also use the attributes (see later) to double the number of foreground colours.

If you have a display capable of handling more than these (e.g. 256 colour xterm) you can use the indexes of the
colours for that display directly instead. For a full list of the colour indeces, look here.

When creating effects that use these extra colours, it is recommended that you also support a reduced colour mode,
using just the 8 common colours. For an example of how to do this, see the Rainbow class.

Finally, some terminals have the concept of a default colour. These can often have special attributes that are otherwise
impossible to set in a terminal - e.g. transparency. If your terminal supports these you can use the COLOUR_DEFAULT
setting to use them. If not supported, asciimatics will treat them as a black background and white foreground.

8 Chapter 3. Basic Input/Output

https://askubuntu.com/a/821163/1014276

asciimatics Documentation, Release 1.13.1

3.2.2 Attributes

Attributes are a way of modifying the displayed text in some basic ways that early hardware terminals supported before
they had colours. Most systems don’t use hardware terminals any more, but the concept persists in all native console
APIs and so is also used here.

Supported attributes are defined by the A_xxx constants in the Screen class. The full list is as follows:

A_BOLD = 1
A_NORMAL = 2
A_REVERSE = 3
A_UNDERLINE = 4

Most systems will support bold (a.k.a bright), normal and reverse attributes. Others are capable of more, but you
will have difficulties using them in a cross-platform manner and so they are deprecated. The attribute is just another
parameter to print_at. For example:

Bright green text
screen.print_at('Hello world!', 0, 0, COLOUR_GREEN, A_BOLD)

3.2.3 Multicoloured strings

If you want to do something more complex, you can use the paint() method to specify a colour map for each
character to be displayed. This must be a list of colour/attribute values (tuples or lists) that is at least as long as the
text to be displayed. This method is typically used for displaying complex, multi-coloured text from a Renderer. See
Animation for more details.

3.2.4 Unicode support

As of V1.7, asciimatics is officially misleadingly named! It has support for unicode input and output. Just use a
unicode literal where you would previously have used a string. For example:

Should have a telephone at the start...
screen.print_at(u' Call me!', 0, 0, COLOUR_GREEN, A_BOLD)

If your system is configured to support unicode, this should be output correctly. However, not all systems will work
straight out of the box. See Unicode characters are not working for more details on how to fix this.

3.2.5 Clearing the Screen

Once you have started your application, you will likely want to clear parts, or all, of the Screen at times. The recom-
mended way to do that is using clear_buffer(). This prevents the flicker that you will see if you tried using the
previously mentioned clear method instead.

3.3 Refreshing the Screen

Just using the above methods to output to screen isn’t quite enough. The Screen maintains a buffer of what is to be
displayed and will only actually display it once the refresh() method is called. This is done to reduce flicker on
the display device as new content is created.

3.3. Refreshing the Screen 9

asciimatics Documentation, Release 1.13.1

Applications are required to re-render everything that needs to be displayed and then call refresh when all the new
content is ready. Note that the play() and draw_next_frame() methods will do this for you automatically at
the end of each frame, so you don’t need to call it again inside your animations.

3.4 Input

To handle user input, use the get_event() method. This instantly returns the latest key-press or mouse event,
without waiting for a new line and without echoing it to screen (for keyboard events). If there is no event available, it
will return None.

The exact class returned depends on the event. It will be either KeyboardEvent or MouseEvent. Handling of
each is covered below.

If you wish to wait until some input is available, you can use the wait_for_input() method to block execution
and then call get_event() to retrieve the input.

3.4.1 KeyboardEvent

This event is triggered for any key-press, including auto repeat when keys are held down. key_code is the ordinal
representation of the key (taking into account keyboard state - e.g. caps lock) if possible, or an extended key code (the
KEY_xxx constants in the Screen class) where not.

For example, if you press ‘a’ normally get_event() will return a KeyboardEvent with key_code 97, which is
ord('a'). If you press the same key with caps lock on, you will get 65, which is ord('A'). If you press ‘F7’ you
will always get KEY_F7 irrespective of the caps lock.

The control key (CTRL) on a keyboard returns control codes (the first 31 codes in the ASCII table). You can calculate
the control code for any key using the ctrl() method. Note that not all systems will return control codes for all
keys, so this function can return None if asciimatics doesn’t believe the key will work. For best system compatibility,
stick to the control codes for alphabetical characters - i.e. “A” to “Z”.

As of V1.7, you can also get keyboard events for Unicode characters outside the ASCII character set. These will also
return the ordinal representation of the unicode character, just like the previous support for ASCII characters.

If you are seeing random garbage instead, your system is probably not correctly configured for unicode. See Unicode
characters are not working for how to fix this.

3.4.2 MouseEvent

This event is triggered for any mouse movement or button click. The current coordinates of the mouse on the Screen
are stored in the x and y properties. If a button was clicked, this is tracked by the buttons property. Allowed values
for the buttons are LEFT_CLICK, RIGHT_CLICK and DOUBLE_CLICK.

Warning: In general, Windows will report all of these straight out of the box. Linux will only report mouse
events if you are using a terminal that supports mouse events (e.g. xterm) in the terminfo database. Even then, not
all terminals report all events. For example, the standard xterm function is just to report button clicks. If you need
your application to handle mouse move events too, you will need to use a terminal that supports the additional
extensions - e.g. the xterm-1003 terminal type. See Mouse support not working for more details on how to fix this.

10 Chapter 3. Basic Input/Output

asciimatics Documentation, Release 1.13.1

3.5 Screen Resizing

It is not possible to change the Screen size through your program. However, the user may resize their terminal or
console while your program is running. Asciimatics will continue to run as best as it can within its original dimensions,
or you can tell it to re-create the Screen to the new size if desired.

In a little more detail, you can read the Screen size (at the time of creation) from the dimensions property. If the user
changes the size at any point, you can detect this by calling the has_resized()method. In addition, you can tell the
Screen to throw an exception if this happens while you are playing a Scene by specifying stop_on_resize=True.

Once you have detetected that the screen size has changed using one of the options above, you can either decide to
carry on with the current Screen or throw it away and create a new one (by simply creating a new Screen object). If you
do the latter, you will typically need to recreate your associated Scenes and Effects to run inside the new boundaries.
See the bars.py demo as a sample of how to handle this.

3.6 Scraping Text

Sometimes it is useful to be able to read what is already displayed on the Screen at a given location. This is often
referred to as screen scraping. You can do this using the get_from() method. It will return the displayed character
and attributes (as a 4-tuple) for any single character location on the Screen.

Check we've not already displayed something before updating.
current_char, fg, attr, bg = screen.get_from(x, y)
if current_char != 32:

screen.print_at('X', x, y)

Warning: Some languages use double-width glyphs. When scraping text for such glyphs, you will find that
get_from returns the character for both of the 2 locations containing the glyph. For example, if you printed at
(0, 0), you would find that asciimatics returns this value for both (0, 0) and (0, 1). For more details on
which languages (and hence unicode characters) are affected by this see, here and here.

3.7 Drawing shapes

The Screen object also provides some anti-aliased line drawing facilities, using ASCII characters to represent the line.
The move() method will move the drawing cursor to the specified coordinates and then the draw() method will
draw a straight line from the current cursor location to the specified coordinates.

You can override the anti-aliasing with the char parameter. This is most useful when trying to clear what was already
drawn. For example:

Draw a diagonal line from the top-left of the screen.
screen.move(0, 0)
screen.draw(10, 10)

Clear the line
screen.move(0, 0)
screen.draw(10, 10, char=' ')

If the resulting line is too thick, you can also pick a thinner pen by specifying thin=True. Examples of both styles
can be found in the Clock sample code.

3.5. Screen Resizing 11

https://en.wikipedia.org/wiki/Halfwidth_and_fullwidth_forms
http://denisbider.blogspot.co.uk/2015/09/when-monospace-fonts-arent-unicode.html

asciimatics Documentation, Release 1.13.1

In addition, there is the fill_polygon() method which will draw a filled polygon in the specified colour using a
set of points passed in to define the required shape. This uses the scan-line algorithm, so you can cut holes inside the
shape by defining one polygon inside another. For example:

Draw a large with a smaller rectangle hole in the middle.
screen.fill_polygon([[(60, 0), (70, 0), (70, 10), (60, 10)],

[(63, 2), (67, 2), (67, 8), (63, 8)]])

3.8 Unicode drawing

The drawing methods covered above are unicode aware and will default to the correct character set for your terminal,
using unicode block characters where possible and falling back to pure ASCII text if not.

12 Chapter 3. Basic Input/Output

CHAPTER 4

Advanced Output

4.1 Rendering

When you want to create an animation, you typically need a sequence of multi-coloured text images to create the
desired effect. This is where a Renderer object comes into play.

A Renderer is simply an object that will return one or more text strings and associated colour maps in a format that
is suitable for display using the paint() method. This collation of text string and colour map is referred to as the
rendered text. It might vary in complexity from a single, monochrome string through to many frames from an ASCII
rendition of a colour video or animated GIF.

All renderers must implement the API of the abstract Renderer class, however there are 2 basic variants.

1. The StaticRenderer creates pre-rendered sequences of rendered text. They are usually initialized with
some static content that can be calculated entirely in advance. For example:

Pre-render ASCIIMATICS using the big Figlet font
renderer = FigletText("ASCIIMATICS", font='big')

2. The DynamicRenderer creates the rendered text on demand. They are typically dependent on the state of
the program or the Screen when rendered. For example:

Render a bar chart with random bars formed of equals signs.
def fn():

return randint(0, 40)
renderer = BarChart(10, 40, [fn, fn], char='=')

Once you have a Renderer you can extract the next text to be displayed by calling rendered_text(). This will
cycle round the static rendered text sequentially or just create the new dynamic rendered text and return it (for use in
the Screen paint method). Generally speaking, rather than doing this directly with the Screen, you will typically want
to use an Effect to handle this. See Animation for more details.

There are many built-in renderers provided by asciimatics. The following section gives you a quick run through of
each one by area. For more examples of Renderers, see the asciimatics samples folder.

13

asciimatics Documentation, Release 1.13.1

4.1.1 Image to ASCII

Asciimatics provides 2 ways to convert image files (e.g. JPEGs, GIFs, etc) into a text equivalent:

• ImageFile - converts the image to grey-scale text.

• ColourImageFile - converts the image to full colour text (using all the screen’s palette).

Both support animated GIFs and will cycle through each image when drawn.

4.1.2 Animated objects

Asciimatics provides the following renderers for more complex animation effects.

• BarChart - draws a horizontal bar chart for a set of data (that may be dynamic in nature).

• Fire - simulates a burning fire.

• Plasma - simulates an animated “plasma” (think lava lamp in 2-D).

• Kaleidoscope - simulates a 2 mirror kaleidoscope.

4.1.3 Text/colour manipulation

The following renderers provide some simple text and colour manipulation.

• FigletText - draws large FIGlet text

• Rainbow - recolours the specified Renderer in as a Rainbow

• RotatedDuplicate - creates a rotated duplicate of the specified Renderer.

4.1.4 Boxes

The following renderers provide some simple boxes and boxed text.

• Box - draws a simple box.

• SpeechBubble - draws a speech bubble around some specified text.

4.2 Static colour codes

When creating static rendered output, it can be helpful to define your colours inline with the rest of your text. The
StaticRenderer class supports this through the ${n1,n2,n3} escape sequence, where n* are digits.

Formally this sequence is defined an escape sequence ${c,a,b} which changes the current colour tuple to be foreground
colour ‘c’, attribute ‘a’ and background colour ‘b’ (using the values of the Screen COLOUR and ATTR constants).
The attribute and background fields are optional.

These tuples create a colour map (for input into paint()) and so the colours will reset to the defaults passed into
paint() at the start of each line. For example, this code will produce a simple Xmas tree with coloured baubles when
rendered (using green as the default colour).

14 Chapter 4. Advanced Output

asciimatics Documentation, Release 1.13.1

StaticRenderer(images=[r"""
${3,1}*

/ \
/${1}o${2} \

/_ _\
/ \${4}b

/ \
/ ${1}o${2} \
/__ __\
${1}d${2} / ${4}o${2} \
/ \
/ ${4}o ${1}o${2}.\

/___________\
${3}|||
${3}|||

"""])

4.3 Experimental

A Renderer can also return a plain text string representation of the next rendered text image. This means they can be
used outside of a Screen. For example:

Print a bar chart with random bars formed of equals signs.
def fn():

return randint(0, 40)
renderer = BarChart(10, 40, [fn, fn], char='=')
print(renderer)

4.3. Experimental 15

asciimatics Documentation, Release 1.13.1

16 Chapter 4. Advanced Output

CHAPTER 5

Animation

5.1 Scenes and Effects

The asciimatics package gets its name from a storyboard technique in films (‘animatics’) where simple animations and
mock-ups are used to get a better feel for the planned film. Much like these storyboards, you need two key elements
for your animation.

1. One or more Scene objects that encompass the key stages of your animation.

2. One or more Effect objects in each Scene that actually display something on the Screen.

An Effect is basically an object that encodes something to be displayed on the Screen. It can be anything from Print
that just displays some rendered text at a specific location for a certain time to Snow that adds dynamically generated
falling snow to the Scene. These are the building blocks of your animation and will be rendered in the strict order that
they appear in the Scene, so most of the time you want to put foreground Effects last to ensure they overwrite anything
else.

There is no hard and fast rule of how to divide up your Scenes, though there is normally a natural cut where you want
to move between effects or clear the Screen, much like you’d need to move to a different cell in a comic strip. These
cuts are where you should consider creating a new Scene.

Once you have built up a set of Effects into a list of one or more Scenes, you can pass this list to play() which will
run through the Scenes in order, or stop playing if the user exits by pressing ‘q’ (assuming you use the default key
handling).

5.2 Timing Effects

When playing animations, asciimatics will try to redraw the Screen 20 times a second. Each iteration of the loop
produces a new frame (no relation to the widget class Frame) and increments the frame counter.

This counter is passed as the frame_no parameter on update() to every Effect amd so an be used to time the
animation. For example, if you only want the Effect to do something every half a second, you could wait for frame_no
to increase by 10 before doing the next update.

17

asciimatics Documentation, Release 1.13.1

This is also the counter that determines when to start/stop an Effect based on the start_frame and stop_frame properties
on each Effect. Specifying non-zero values will delay the start of the Effect until, or stop drawing it at, the specified
frame count in the Scene.

See the credits sample for an example of how to use these properties.

5.3 Sprites and Paths

A Sprite is a special Effect designed to move some rendered text around the Screen, thus creating an animated
character. As such, they work like any other Effect, needing to be placed in a Scene and passed to the Screen (through
the play() method) to be displayed. They typically take:

• a set of Renderers to animate the motion of the character when moving in any direction

• a default Renderer (to be used when standing still)

• a path to define where the Sprite moves.

Much like Renderers, the paths come in 2 flavours:

1. A Path is a pre-defined path that can be fully determined at the start of the program. This provides 4 methods -
jump_to(), wait(), move_straight_to() and move_round_to() - to define the path. Just decide
on the path and script it by chaining these methods together.

2. A DynamicPath which depends on the program state and so can only be calculated when needed - e.g.
because it depends on what key the user is pressing. These provide an abstract method - process_event()
- that must be overridden to handle any keys and Update the current coordinates of the Path, to be returned the
next time the Sprite asks for an update.

The full declaration of a Sprite is therefore something like this.

Sample Sprite that plots an "X" for each step along an elliptical path.
centre = (screen.width // 2, screen.height // 2)
curve_path = []
for i in range(0, 11):

curve_path.append(
(centre[0] + (screen.width / 4 * math.sin(i * math.pi / 5)),
centre[1] - (screen.height / 4 * math.cos(i * math.pi / 5))))

path = Path()
path.jump_to(centre[0], centre[1] - screen.height // 4),
path.move_round_to(curve_path, 60)
sprite = Sprite(

screen,
renderer_dict={

"default": StaticRenderer(images=["X"])
},
path=path,
colour=Screen.COLOUR_RED,
clear=False)

For more examples of using Sprites, including dynamic Paths, see the samples directory.

5.4 Particle Systems

A ParticleEffect is a special Effect designed to draw a particle system. It consists of one or more
ParticleEmitter objects which in turn contains one or more Particle objects.

18 Chapter 5. Animation

https://en.m.wikipedia.org/wiki/Particle_system

asciimatics Documentation, Release 1.13.1

The ParticleEffect defines a chain of ParticleEmitters that spawn one or more Particles, each with
a unique set of attributes - e.g. location, direction, colour, etc. The ParticleEffect renders a frame by rendering
each of these Particles and then updating them following the rules defined by the ParticleEmitter.

It all sounds a bit convoluted, doesn’t it? Let’s try a concrete example to clarify it. . . Consider the StarFirework
effect. This is constructed as follows.

1. The StarFirework constructs a Rocket. This is a ParticleEmitter that has just one Particle that
shoots vertically up the Screen to hit a pre-defined end point.

2. When this Particle hits its end-point, it expires and spawns a StarExplosion. This is a
ParticleEmitter that spawns many Particles in such a way that they are explode outwards radially
from where the Rocket expired.

3. In turn, each of these Particles from the StarExplosion spawns a StarTrail on each new frame.
These are ParticleSystems that spawn a single Particle which just hovers for a few frames and fades
away.

Putting this all together (by playing the Effect) you have a classic exploding firework. For more examples, see the
other Effects in the particles and fireworks samples.

5.5 CPU Considerations

Many people run asciimatics on low-power systems and so care about CPU. However there is a trade-off between CPU
usage and responsiveness of any User Interface or the slickness of any animation. Asciimatics tries to handle this for
you by looking at when each Effect next wants to be redrawn and only refreshing the Screen when needed.

For most use-cases, this default should be enough for your needs. However, there are a couple of cases where you
might need more. The first is very low-power (e.g. SOC) systems where you need to keep CPU usage to a minimum
for a widget-based UI. In this case, you can use the reduce_cpu parameter when constructing your Frame.

The other case, is actually the opposite problem - you may find that asciimatics is being too conservative and you
need to refresh the Screen before it thinks you need to do so. In this case, you can simply force its hand by calling
force_update(), which will force a full refresh of the Screen next time that draw_next_frame() is called.

5.6 Using async frameworks

If you cannot allow asciimatics to schedule each frame itself, e.g. because you are using an asynchronous framework
like gevent, asyncio or twisted, that’s fine. Asciimatics is designed to run in tiny time slices that are ideal for such a
framework. All you need to do is call set_scenes() to set up your scenes and draw_next_frame() (every
1/20 of a second) to draw the next frame.

For example, here is how you can run inside an asyncio event loop.

import asyncio
from asciimatics.effects import Cycle, Stars
from asciimatics.renderers import FigletText
from asciimatics.scene import Scene
from asciimatics.screen import Screen

def update_screen(end_time, loop, screen):
screen.draw_next_frame()
if loop.time() < end_time:

loop.call_later(0.05, update_screen, end_time, loop, screen)

(continues on next page)

5.5. CPU Considerations 19

asciimatics Documentation, Release 1.13.1

(continued from previous page)

else:
loop.stop()

Define the scene that you'd like to play.
screen = Screen.open()
effects = [

Cycle(
screen,
FigletText("ASCIIMATICS", font='big'),
screen.height // 2 - 8),

Cycle(
screen,
FigletText("ROCKS!", font='big'),
screen.height // 2 + 3),

Stars(screen, (screen.width + screen.height) // 2)
]
screen.set_scenes([Scene(effects, 500)])

Schedule the first call to display_date()
loop = asyncio.new_event_loop()
end_time = loop.time() + 5.0
loop.call_soon(update_screen, end_time, loop, screen)

Blocking call interrupted by loop.stop()
loop.run_forever()
loop.close()
screen.close()

20 Chapter 5. Animation

CHAPTER 6

User Interfaces

6.1 Introduction

Asciimatics provides a widgets sub-package that allows you to create interactive text user interfaces. At its heart, the
logic is quite simple, reusing concepts from standard web and desktop GUI frameworks.

1. The basic building block for your text UI is a Widget. There is a set of standard ones provided by asciimatics,
but you can create a custom set if needed. The basic set has strong parallels with simple web input forms - e.g.
buttons, check boxes, etc.

2. The Widgets need to be arranged on the Screen and rearranged whenever it is resized. The Layout class handles
this for you. You just need to add your Widgets to one.

3. You then need to display the Layouts. To do this, you must add them to a Frame. This class is an Effect
and so can be used in any Scene alongside any other Effect. The Frame will draw any parts of the Layouts it
contains that are visible within its boundaries. The net result is that it begins to look a bit like a window in GUI
frameworks.

And that’s it! You can set various callbacks to get triggered when key events occur - e.g. changes to values, buttons
get clicked, etc. - and use these to trigger your application processing. For an example, see the contact_list.py sample
provided - which will look a bit like this:

21

asciimatics Documentation, Release 1.13.1

6.1.1 Common keys

When navigating around a Frame, you can normally use the following keys.

Key Action
Tab Move to the next Widget in the Frame
Backtab (shift+tab) Move to the previous Widget in the Frame
Up arrow Move to the nearest Widget above the current focus.
Down arrow Move to the nearest Widget below the current focus.
Left arrow Move to the nearest Widget to the left of the current focus.
Right arrow Move to the nearest Widget to the right of the current focus.
Space or Return Select the current Widget - e.g. click a Button, or pop-up a list of options.

Warning: Please note that asciimatics will not allow you to navigate to a disabled widget. Instead it will select
the next enabled widget when traversing the Frame.

However, some widgets (e.g. text editing widgets) have their own logic for handling the cursor key actions, which
override the common navigation. In such cases, tab/backtab will still navigate out of the Widgets.

In addition you can also use the following extra keys inside text editing widgets.

22 Chapter 6. User Interfaces

asciimatics Documentation, Release 1.13.1

Key Action
Home/End Move to the start/end of the current line.
Delete Delete the character under the cursor.
Backspace Delete the character before the cursor.

6.2 Model/View Design

Before we jump into exactly what all the objects are and what they do for you, it is important to understand how you
must put them together to make the best use of them.

The underlying Screen/Scene/Effect design of asciimatics means that objects regularly get thrown away and recreated
- especially when the Screen is resized. It is therefore vital to separate your data model from your code to display it
on the screen.

This split is often (wrongly) termed the MVC model, but a more accurate description is Separated Presentation. No
matter what term you use, the concept is easy: use a separate class to handle your persistent data storage.

In more concrete terms, let’s have a closer look at the contact_list sample. This consists of 3 basic classes:

1. ContactModel: This is the model. It stores simple contact details in a sqlite in-memory database and provides a
simple create/read/update/delete interface to manipulate any contact. Note that you don’t have to be this heavy-
weight with the data storage; a simple class to wrap a list of dictionaries would also suffice - but doesn’t look as
professional for a demo!

Show/hide code

class ContactModel(object):
def __init__(self):

Create a database in RAM
self._db = sqlite3.connect(':memory:')
self._db.row_factory = sqlite3.Row

Create the basic contact table.
self._db.cursor().execute('''

CREATE TABLE contacts(
id INTEGER PRIMARY KEY,
name TEXT,
phone TEXT,
address TEXT,
email TEXT,
notes TEXT)

''')
self._db.commit()

Current contact when editing.
self.current_id = None

def add(self, contact):
self._db.cursor().execute('''

INSERT INTO contacts(name, phone, address, email, notes)
VALUES(:name, :phone, :address, :email, :notes)''',

contact)
self._db.commit()

def get_summary(self):

(continues on next page)

6.2. Model/View Design 23

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://martinfowler.com/eaaDev/SeparatedPresentation.html

asciimatics Documentation, Release 1.13.1

(continued from previous page)

return self._db.cursor().execute(
"SELECT name, id from contacts").fetchall()

def get_contact(self, contact_id):
return self._db.cursor().execute(

"SELECT * from contacts where id=?", str(contact_id)).fetchone()

def get_current_contact(self):
if self.current_id is None:

return {"name": "", "address": "", "phone": "", "email": "", "notes": ""}
else:

return self.get_contact(self.current_id)

def update_current_contact(self, details):
if self.current_id is None:

self.add(details)
else:

self._db.cursor().execute('''
UPDATE contacts SET name=:name, phone=:phone, address=:address,
email=:email, notes=:notes WHERE id=:id''',

details)
self._db.commit()

def delete_contact(self, contact_id):
self._db.cursor().execute('''

DELETE FROM contacts WHERE id=:id''', {"id": contact_id})
self._db.commit()

2. ListView: This is the main view. It queries the ContactModel for the list of known contacts and displays them in
a list, complete with some extra buttons to add/edit/delete contacts.

Show/hide code

class ListView(Frame):
def __init__(self, screen, model):

super(ListView, self).__init__(screen,
screen.height * 2 // 3,
screen.width * 2 // 3,
on_load=self._reload_list,
hover_focus=True,
title="Contact List")

Save off the model that accesses the contacts database.
self._model = model

Create the form for displaying the list of contacts.
self._list_view = ListBox(

Widget.FILL_FRAME,
model.get_summary(), name="contacts", on_select=self._on_pick)

self._edit_button = Button("Edit", self._edit)
self._delete_button = Button("Delete", self._delete)
layout = Layout([100], fill_frame=True)
self.add_layout(layout)
layout.add_widget(self._list_view)
layout.add_widget(Divider())
layout2 = Layout([1, 1, 1, 1])
self.add_layout(layout2)
layout2.add_widget(Button("Add", self._add), 0)

(continues on next page)

24 Chapter 6. User Interfaces

asciimatics Documentation, Release 1.13.1

(continued from previous page)

layout2.add_widget(self._edit_button, 1)
layout2.add_widget(self._delete_button, 2)
layout2.add_widget(Button("Quit", self._quit), 3)
self.fix()

def _on_pick(self):
self._edit_button.disabled = self._list_view.value is None
self._delete_button.disabled = self._list_view.value is None

def _reload_list(self):
self._list_view.options = self._model.get_summary()
self._model.current_id = None

def _add(self):
self._model.current_id = None
raise NextScene("Edit Contact")

def _edit(self):
self.save()
self._model.current_id = self.data["contacts"]
raise NextScene("Edit Contact")

def _delete(self):
self.save()
self._model.delete_contact(self.data["contacts"])
self._reload_list()

@staticmethod
def _quit():

raise StopApplication("User pressed quit")

3. ContactView: This is the detailed view. It queries the ContactModel for the current contact to be displayed when
it is reset (note: there may be no contact if the user is adding a contact) and writes any changes back to the
model when the user clicks OK.

Show/hide code

class ContactView(Frame):
def __init__(self, screen, model):

super(ContactView, self).__init__(screen,
screen.height * 2 // 3,
screen.width * 2 // 3,
hover_focus=True,
title="Contact Details")

Save off the model that accesses the contacts database.
self._model = model

Create the form for displaying the list of contacts.
layout = Layout([100], fill_frame=True)
self.add_layout(layout)
layout.add_widget(Text("Name:", "name"))
layout.add_widget(Text("Address:", "address"))
layout.add_widget(Text("Phone number:", "phone"))
layout.add_widget(Text("Email address:", "email"))
layout.add_widget(TextBox(5, "Notes:", "notes", as_string=True))
layout2 = Layout([1, 1, 1, 1])
self.add_layout(layout2)

(continues on next page)

6.2. Model/View Design 25

asciimatics Documentation, Release 1.13.1

(continued from previous page)

layout2.add_widget(Button("OK", self._ok), 0)
layout2.add_widget(Button("Cancel", self._cancel), 3)
self.fix()

def reset(self):
Do standard reset to clear out form, then populate with new data.
super(ContactView, self).reset()
self.data = self._model.get_current_contact()

def _ok(self):
self.save()
self._model.update_current_contact(self.data)
raise NextScene("Main")

@staticmethod
def _cancel():

raise NextScene("Main")

6.3 Displaying your UI

OK, so you want to do something a little more interactive with your user. The first thing you need to decide is what
information you want to get from them and how you’re going to achieve that. In short:

1. What data you want them to be able to enter - e.g. their name.

2. How you want to break that down into fields - e.g. first name, last name.

3. What the natural representation of those fields would be - e.g. text strings.

At this point, you can now decide which Widgets you want to use. The standard selection is as follows.

Widget type Description
Button Action buttons - e.g. ok/cancel/etc.
CheckBox Simple yes/no tick boxes.
DatePicker A single-line widget for selecting a date (using a pop-up list).
Divider A spacer between widgets (for aesthetics).
DropdownList A single-line widget that pops up a list from which the user can select a single value.
FileBrowser A multi-line widget for listing the local file system.
Label A label for a group of related widgets.
ListBox A list of possible options from which users can select one value.
MultiColumnListBox Like a ListBox, but for displaying tabular data.
RadioButtons A list of radio buttons. These allow users to select one value from a list of options.
Text A single line of editable text.
TextBox A multi-line box of editable text.
TimePicker A single-line widget for selecting a time (using a pop-up list).
VerticalDivider A vertical line divider - useful for providing a visual marker between columns in a

Layout.

Note: You can use the hide_char option on Text widgets to hide sensitive data - e.g. for passwords.

Asciimatics will automatically arrange these for you with just a little extra help. All you need to do is decide how
many columns you want for your fields and which fields should be in which columns. To tell asciimatics what to do

26 Chapter 6. User Interfaces

asciimatics Documentation, Release 1.13.1

you create a Layout (or more than one if you want a more complex structure where different parts of the screen need
differing column counts) and associate it with the Frame where you will display it.

For example, this will create a Frame that is 80x20 characters and define 4 columns that are each 20 columns wide:

frame = Frame(screen, 80, 20, has_border=False)
layout = Layout([1, 1, 1, 1])
frame.add_layout(layout)

Once you have a Layout, you can add Widgets to the relevant column. For example, this will add a button to the first
and last columns:

layout.add_widget(Button("OK", self._ok), 0)
layout.add_widget(Button("Cancel", self._cancel), 3)

If you want to put a standard label on all your input fields, that’s fine too; asciimatics will decide how big your label
needs to be across all fields in the same column and then indent them all to create a more aesthetically pleasing layout.
For example, this will provide a single column with labels for each field, indenting all of the fields to the same depth:

layout = Layout([100])
frame.add_layout(layout)
layout.add_widget(Text("Name:", "name"))
layout.add_widget(Text("Address:", "address"))
layout.add_widget(Text("Phone number:", "phone"))
layout.add_widget(Text("Email address:", "email"))
layout.add_widget(TextBox(5, "Notes:", "notes", as_string=True))

If you want more direct control of your labels, you could use the Label widget to place them anywhere in the Layout
as well as control the justification (left, centre or right) of the text.

Or maybe you just want some static text in your UI? The simplest thing to do there is to use the Label widget. If you
need something a little more advanced - e.g. a pre-formatted multi-line status bar, use a TextBox and disable it as
described below.

In some cases, you may want to have different alignments for various blocks of Widgets. You can use multiple Layouts
in one Frame to handle this case.

For example, if you want a search page, which allows you to enter data at the top and a list of results at the bottom of
the Frame, you could use code like this:

layout1 = Layout([100])
frame.add_layout(layout1)
layout1.add_widget(Text(label="Search:", name="search_string"))

layout2 = Layout([100])
frame.add_layout(layout2)
layout1.add_widget(TextBox(Widget.FILL_FRAME, name="results"))

6.3.1 Disabling widgets

Any widget can be disabled by setting the disabled property. When this is True, asciimatics will redraw the
widget using the ‘disabled’ colour palette entry and prevent the user from selecting it or editing it.

It is still possible to change the widget programmatically, though. For example, you can still change the value of a
disabled widget.

This is the recommended way of getting a piece of non-interactive data (e.g. a status bar) into your UI. If the disabled
colour is the incorrect choice for your UI, you can override it as explained in Custom widget colours. For an example

6.3. Displaying your UI 27

asciimatics Documentation, Release 1.13.1

of such a widget, see the top.py sample.

6.3.2 Layouts in more detail

If you need to do something more complex, you can use multiple Layouts. Asciimatics uses the following logic to
determine the location of Widgets.

1. The Frame owns one or more Layouts. The Layouts stack one above each other when displayed - i.e. the first
Layout in the Frame is above the second, etc.

2. Each Layout defines some horizontal constraints by defining columns as a proportion of the full Frame width.

3. The Widgets are assigned a column within the Layout that owns them.

4. The Layout then decides the exact size and location to make each Widget best fit the visible space as constrained
by the above.

For example:

+--+
|Screen..|
|..|
|...+--+...|
...	Frame	...				
...	+--+	...				
...		Layout 1		...		
...	+--+	...				
...	+------------------------------+-------------------------------+	...				
...		Layout 2			...	
...		- Column 1	- Column 2		...	
...	+------------------------------+-------------------------------+	...				
...	+-------------+---------------------------------+--------------+	...				
...		Layout 3	< Widget 1 >			...
...		
...			< Widget N >			...
...	+-------------+---------------------------------+--------------+	...				
...+--+...						
..						
+--+

This consists of a single Frame with 3 Layouts. The first is a single, full-width column, the second has two 50% width
columns and the third consists of 3 columns of relative size 25:50:25. The last actually contains some Widgets in
the second column (though this is just for illustration purposes as we’d expect most Layouts to have some Widgets in
them).

6.3.3 Filling the space

Once you’ve got the basic rows and columns for your UI sorted, you may want to use some strategic spacing. At the
simplest level, you can use the previously mentioned Divider widget to create some extra vertical space or insert a
visual section break.

Moving up the complexity, you can pick different sizes for your Frames based on the size of your current Screen. The
Frame will be recreated when the screen is resized and so you will use more or less real estate appropriately.

Finally, you could also tell asciimatics to use an object to fill any remaining space. This allows for the sort of UI like
you’d see in applications like top where you have a fixed header or footer, but then a variably sized part that contains
the data to be displayed.

28 Chapter 6. User Interfaces

asciimatics Documentation, Release 1.13.1

You can achieve this in 2 ways:

1. You can tell a Layout to fill any remaining space in the Frame using fill_frame=True on construction.

2. You can tell some Widgets to fill any remaining space in the Frame using a height of Widget.FILL_FRAME on
construction.

These two methods can be combined to tell a Layout to fill the Frame and a Widget to fill this Layout. See the ListView
class in the contact_list demo code.

Warning: Note that you can only have one Layout and/or Widget that fills the Frame. Trying to set more than
one will be rejected.

6.3.4 Full-screen Frames

By default, asciimatics assumes that you are putting multiple Frames into one Scene and so provides defaults (e.g.
borders) to optimize this type of UI. However, some UIs only need a single full-screen Frame. This can easily be
achieved by declaring a Frame the full width and height of the screen and then specifying has_border=False.

6.3.5 Large forms

If you have a very large form, you may find it is too big to fit into a standard screen. This is not a problem. You can
keep adding your Widgets to your Layout and asciimatics will automatically clip the content to the space available and
scroll the content as required.

If you do this, it is recommended that you set has_border=True on the Frame so that the user can use the scroll bar
provided to move around the form.

6.3.6 Colour schemes

The colours for any Widget are determined by the palette property of the Frame that contains the Widget. If desired,
it is possible to have a different palette for every Frame, however your users may prefer a more consistent approach.

The palette is just a simple dictionary to map Widget components to a colour tuple. A colour tuple is simply the
foreground colour, attribute and background colour. For example:

(Screen.COLOUR_GREEN, Screen.A_BOLD, Screen.COLOUR_BLUE)

The following table shows the required keys for the palette.

6.3. Displaying your UI 29

asciimatics Documentation, Release 1.13.1

Key Usage
“background” Frame background
“borders” Frame border and Divider Widget
“button” Buttons
“control” Checkboxes and RadioButtons
“disabled” Any disabled Widget
“edit_text” Text and TextBox
“field” Value of an option for a Checkbox, RadioButton or Listbox
“focus_button” Buttons with input focus
“focus_control” Checkboxes and RadioButtons with input focus
“focus_edit_text” Text and TextBox with input focus
“focus_field” As above with input focus
“invalid” The widget contains invalid data
“label” Widget labels
“scroll” Frame scroll bar
“selected_control” Checkboxes and RadioButtons when selected
“selected_field” As above when selected
“selected_focus_control” Checkboxes and RadioButtons with both
“selected_focus_field” As above with both
“title” Frame title

In addition to the default colour scheme for all your widgets, asciimatics provides some other pre-defined colour
schemes (or themes) that you can use for your widgets using set_theme(). These themes are as follows.

Name Description
“monochrome” Simple black and white colour scheme.
“green” A classic green terminal.
“bright” Black background, green and yellow scheme.
“tlj256” Shades of black white and red - 256 colour terminals only.

You can add your own theme to this list by defining a new entry in the THEMES

6.3.7 Custom widget colours

In some cases, a single palette for the entire Frame is not sufficient. If you need a more fine-grained approach to the
colouring, you can customize the colour for any Widget by setting the custom_colour for that Widget. The only
constraint on this property is that it must still be the value of one of the keys within the owning Frame’s palette.

6.3.8 Changing colours inline

The previous options should be enough for most UIs. However, sometimes it is useful to be able to change the colour
of some text inside the value for some widgets, e.g. to provide syntax highlighting in a TextBox. You can do this using
a Parser object for those widgets that support it.

By passing in a parser that understands extra control codes or the need to highlight certain characters differently, you
can control colours on a letter by letter basis. Out of the box, asciimatics provides 2 parsers, which can handle the
${c,a,b} format used by its Renderers, or the ANSI standard terminal escape codes (used by many Linux terminals).
Simply use the relevant parser (AsciimaticsParser or AnsiTerminalParser) and pass in values containing
the associated control codes to change colours where needed.

Check out the latest code in forms.py and top.py for examples of how this works.

30 Chapter 6. User Interfaces

asciimatics Documentation, Release 1.13.1

6.4 Setting values

By this stage, you should have a basic User Interface up and running, but how do you set the values in each of the
Widgets - e.g. to pre-populate known values in a form? There are 2 ways to handle this:

1. You can set the value directly on each Widget using the value property.

2. You can set the value for all Widgets in a Frame by setting at the data property. This is a simple key/value
dictionary, using the name property for each Widget as the keys.

The latter is a preferred as a symmetrical solution is provided to access all the data for each Widget, thus giving you a
simple way to read and then replay the data back into your Frame.

6.5 Getting values

Now that you have a Frame with some Widgets in it and the user is filling them in, how do you find out what they
entered? There are 2 basic ways to do this:

1. You can query each Widget directly, using the value property. This returns the current value the user has entered
at any time (even when the Frame is not active). Note that it may be None for those Widgets where there is no
value - e.g. buttons.

2. You can query the Frame‘by looking at the ‘data property. This will return the value for every Widget in the
former as a dictionary, using the Widget name properties for the keys. Note that data is just a cache, which only
gets updated when you call save(), so you need to call this method to refresh the cache before accessing it.

For example:

Form definition
layout = Layout([100])
frame.add_layout(layout)
layout.add_widget(Text("Name:", "name"))
layout.add_widget(Text("Address:", "address"))
layout.add_widget(TextBox(5, "Notes:", "notes", as_string=True))

Sample frame.data after user has filled it in.
{

"name": "Peter",
"address": "Somewhere on earth",
"notes": "Some multi-line\ntext from the user."

}

6.5.1 Validating text data

Free-form text input sometimes needs validating to make sure that the user has entered the right thing - e.g. a valid
email address - in a form. Asciimatics makes this easy by adding the validator parameter to Text widgets.

This parameter takes either a regular expression string or a function (taking a single parameter of the current widget
value). Asciimatics will use it to determine if the widget contains valid data. It uses this information in 2 places.

1. Whenever the Frame is redrawn, asciimatics will check the state and flag any invalid values using the invalid
colour palette selection.

2. When your program calls save() specifying validate=True, asciimatics will check all fields and throw an
InvalidFields exception if it finds any invalid data.

6.4. Setting values 31

asciimatics Documentation, Release 1.13.1

6.5.2 Input focus

As mentioned in the explanation of colour palettes, asciimatics has the concept of an input focus. This is the Widget
that will take any input from the keyboard. Assuming you are using the default palette, the Widget with the input focus
will be highlighted. You can move the focus using the cursor keys, tab/backtab or by using the mouse.

The exact way that the mouse affects the focus depends on a combination of the capabilities of your termi-
nal/console and the settings of your Frame. At a minimum, clicking on the Widget will always work. If you specify
hover_focus=True and your terminal supports reporting mouse move events, just hovering over the Widget with the
mouse pointer will move the focus.

6.5.3 Modal Frames

When constructing a Frame, you can specify whether it is modal or not using the is_modal parameter. Modal Frames
will not allow any input to filter through to other Effects in the Scene, so when one is on top of all other Effects, this
means that only it will see the user input.

This is commonly used for, but not limited to, notifications to the user that must be acknowledged (as implemented by
PopUpDialog).

6.5.4 Global key handling

In addition to mouse control to switch focus, you can also set up a global event handler to navigate your forms. This
is useful for keyboard shortcuts - e.g. Ctrl+Q to quit your program.

To set up this handler, you need to pass it into your screen on the play() Method. For example

Event handler for global keys
def global_shortcuts(event):

if isinstance(event, KeyboardEvent):
c = event.key_code
Stop on ctrl+q or ctrl+x
if c in (17, 24):

raise StopApplication("User terminated app")

Pass this to the screen...
screen.play(scenes, unhandled_input=global_shortcuts)

Warning: Note that the global handler is only called if the focus does not process the event. Some widgets - e.g.
TextBox - take any printable text and so the only keys that always get to this handler are the control codes. Others
will sometimes get here depending on the type of Widget in focus and whether the Frame is modal or not..

By default, the global handler will do nothing if you are playing any Scenes containing a Frame. Otherwise it contains
the top-level logic for skipping to the next Scene (on space or enter), or exiting the program (on Q or X).

6.5.5 Dealing with Ctrl+C and Ctrl+Z

A lot of modern UIs want to be able to use Ctrl+C/Z to do something other than kill the application. The problem
for Python is that this normally triggers a KeyboardInterrupt - which typically kills the application - or causes the
operating system to suspend the process (on UNIX variants).

32 Chapter 6. User Interfaces

asciimatics Documentation, Release 1.13.1

If you want to prevent this and use Ctrl+C/Z for another purpose, you can tell asciimatics to catch the low-level signals
to prevent these interrupts from being generated (and so return the keypress to your application). This is done by
specifying catch_interrupt=True when you create the Screen by calling wrapper().

6.5.6 Dealing with Ctrl+S

Back in the days when terminals really were separate machines connected over wires to a computer, it was necessary
to be able to signal that the terminal needed time to catch up. This was done using software flow control, using the
Ctrl+S/Ctrl+Q control codes to tell the computer to stop/restart sending text.

These days, it’s not really necessary, but is still a supported feature on most terminals. On some systems you can
switch this off so you get access to Ctrl+S, but it is not possible on them all. See Ctrl+S does not work for details on
how to fix this.

6.6 Flow of control

By this stage you should have a program with some Frames and can extract what your user has entered into any of
them. But how do you know when to act and move between Frames? The answer is callbacks and exceptions.

6.6.1 Callbacks

A callback is just a function that you pass into another function to be called when the associated event occurs. In
asciimatics, they can usually be identified by the fact that they start with on and correspond to a significant input
action from the user, e.g. on_click.

When writing your application, you simply need to decide which events you want to use to trigger some processing
and create appropriate callbacks. The most common pattern is to use a Button and define an on_click callback.

In addition, there are other events that can be triggered when widget values change. These can be used to provide
dynamic effects like enabling/disabling Buttons based on the current value of another Widget.

6.6.2 Exceptions

Asciimatics uses exceptions to tell the animation engine to move to a new Scene or stop the whole process.
Other exceptions are not caught and so can still be used as normal. The details for the new exceptions are as
follows:

1. StopApplication - This exception will stop the animation engine and return flow to the function that called
into the Screen.

2. NextScene - This exception tells the animation engine to move to a new Scene. The precise Scene is deter-
mined by the name passed into the exception. If none is specified, the engine will simply roundi robin to the
next available Scene.

Note that the above logic requires each Scene to be given a unique name on construction. For example:

Given this scene list...
scenes = [

Scene([ListView(screen, contacts)], -1, name="Main"),
Scene([ContactView(screen, contacts)], -1, name="Edit Contact")

]
screen.play(scenes)

(continues on next page)

6.6. Flow of control 33

asciimatics Documentation, Release 1.13.1

(continued from previous page)

You can use this code to move back to the first scene at any time...
raise NextScene("Main")

6.7 Data handling

By this stage you should have everything you need for a fully functional UI. However, it may not be quite clear how
to pass data around all your component parts because asciimatics doesn’t provide any classes to do it for you. Why?
Because we don’t want to tie you down to a specific implementation. You should be able to pick your own!

Look back at the earlier explanation of model/view design. The model can be any class you like! All you need to do
is:

1. Define a model class to store any state and provide suitable APIs to access it as needed from your UI (a.k.a.
views).

2. Define your own views (based on an Effect or Frame) to define your UI and store a reference to the model
(typically as a parameter on construction).

3. Use that saved reference to the model to handle updates as needed inside your view’s callbacks or methods.

For a concrete example of how to do this check out the contact list sample and look at how it defines and uses the
ContactModel. Alternatively, the quick_model sample shows how the same forms would work witha simple list of
dictionaries instead.

6.8 Dynamic scenes

That done, there are just a few more final touches to consider. These all touch on dynamically changing or reconstruct-
ing your Scene.

At a high level, you need to decide what you want to achieve. The basic options are as follows.

1. If you just want to have some extra Frames on the same Screen - e.g. pop-up windows - that’s fine. Just use the
existing classes (see below)!

2. If you want to be able to draw other content outside of your existing Frame(s), you probably want to use other
Effects.

3. If you want to be able to add something inside your Frame(s), you almost certainly want to create a custom
Widget for that new content.

The rest of this section goes through those options (and a couple more related changes) in a little more detail.

6.8.1 Adding other effects

Since Frames are just another Effect, they can be combined with any other Effect in a Scene. For example, this will
put a simple input form over the top of the animated Julia set Effect:

scenes = []
effects = [

Julia(screen),
InputFormFrame(screen)

]
scenes.append(Scene(effects, -1))
screen.play(scenes)

34 Chapter 6. User Interfaces

asciimatics Documentation, Release 1.13.1

The ordering is important. The effects at the bottom of the list are at the top of the screen Z order and so will be
displayed in preference to those lower in the Z order (i.e. those earlier in the list).

The most likely reason you will want to use this is to use the Background Effect to set a background colour for the
whole screen behind your Frames. See the forms.py demo for an example of this use case.

6.8.2 Pop-up dialogs

Along a similar line, you can also add a PopUpDialog to your Scenes at any time. These consist of a single text
message and a set of buttons that you can define when creating the dialog.

Owing to restrictions on how objects need to be rebuilt when the screen is resized, these should be limited to simple
are confirmation or error cases - e.g. “Are you sure you want to quit?” For more details on the restrictions, see the
section on restoring state.

6.8.3 Pop-up menus

You can also add a PopupMenu to your Scenes in the same way. These allow you to create a simple temporary list of
options from which the user has to select just one entry (by clicking on it or moving the focus and pressing Enter) or
dismiss the whole list (by pressing Escape or clicking outside of the menu).

Owing to their temporary nature, they are not maintained over screen resizing.

6.8.4 Screen resizing

If you follow the standard application mainline logic as found in all the sample code, your application will want to
resize all your Effects and Widgets whenever the user resizes the terminal. To do this you need to get a new Screen
then rebuild a new set of objects to use that Screen.

Sound like a bit of a drag, huh? This is why it is recommended that you separate your presentation from the rest of
your application logic. If you do it right you will find that it actually just means you go through exactly the same
initialization path as you did before to create your Scenes in the first place. There are a couple of gotchas, though.

First, you need to make sure that asciimatics will exit and recreate a new Screen when the terminal is resized. You do
that with this boilerplate code that is in most of the samples.

def main(screen, scene):
Define your Scenes here
scenes = ...

Run your program
screen.play(scenes, stop_on_resize=True, start_scene=scene)

last_scene = None
while True:

try:
Screen.wrapper(main, arguments=[last_scene])
sys.exit(0)

except ResizeScreenError as e:
last_scene = e.scene

This will allow you to decide how all your UI should look whenever the screen is resized and will restart at the
Scene that was playing at the time of the resizing.

6.8. Dynamic scenes 35

asciimatics Documentation, Release 1.13.1

6.8.5 Restoring state

Recreating your view is only half the story. Now you need to ensure that you have restored any state inside your
application - e.g. any dynamic effects are added back in, your new Scene has the same internal state as the old, etc.
Asciimatics provides a standard interface (the clone method) to help you out here.

When the running Scene is resized (and passed back into the Screen as the start scene), the new Scene will run through
all the Effects in the old copy looking for any with a clone method. If it finds one, it will call it with 2 parameters: the
new Screen and the new Scene to own the cloned Effect. This allows you to take full control of how the new Effect is
recreated. Asciimatics uses this interface in 2 ways by default:

1. To ensure that any data is restored in the new Scene.

2. To duplicate any dynamically added PopUpDialog objects in the new Scene.

You could override this processing to handle your own custom cloning logic. The formal definition of the API is
defined as follows.

def clone(self, screen, scene):
"""
Create a clone of this Effect into a new Screen.

:param screen: The new Screen object to clone into.
:param scene: The new Scene object to clone into.
"""

6.8.6 Reducing CPU usage

It is the nature of text UIs that they don’t need to refresh anywhere near as often as a full-blown animated Scene.
Asciimatics therefore optimizes the refresh rate when only Frames are being displayed on the Screen.

However, there are some widgets that can reduce the need for animation even further by not requesting animation
updates (e.g. for a blinking cursor). If this is an issue for your application, you can specify reduce_cpu=True
when constructing your Frames. See contact_list.py for an example of this.

6.9 Custom widgets

To develop your own widget, you need to define a new class that inherits from Widget. You then have to implement
the following functions.

1. reset() - This is where you should reset any state for your widget. It gets called whenever the owning Frame
is initialised, which can be when it is first displayed, when the user moves to a new Scene or when the screen is
resized.

2. update() - This is where you should put the logic to draw your widget. It gets called every time asciimatics
needs to redraw the screen (and so should always draw the entire widget).

3. process_event() - This is where you should put your code to handle mouse and keyboard events.

4. value - This must return the current value for the widget.

5. required_height() - This returns the minimum required height for your widget. It is used by the owning
Layout to determine the size and location of your widget.

With these all defined, you should now be able to add your new custom widget to a Layout like any of the standard
ones delivered in this package.

36 Chapter 6. User Interfaces

CHAPTER 7

Troubleshooting

7.1 Installation issues

7.1.1 Android

To run on Android, you need access to a CLI environment. I’ve found that https://termux.com does the trick, but you
need to install some extra packages before you can install asciimatics.

After installing termux, start up the app and run the following commands:

apt update
apt-get install clang python-dev libjpeg-turbo-dev
LDFLAGS=-L/system/lib pip install Pillow
pip install asciimatics

7.1.2 Linux

Although asciimatics is a pure python implementation, it depends on Pillow (a fork of the Python Imaging Library).
This package depends on some native libraries that must be installed first. For details of what libararies you need, see
the Pillow documentation.

For a list of possible solutions, see the answer on Stackoverflow. In short, either install the native libraries you need,
or force an installation of an older version (2.9.0) of Pillow.

7.2 My application only runs on Windows

Given that your application runs on Windows, but not any curses-based solution (i.e. Mac or Linux), the fundamental
logic in your code is right. It might be a bug in asciimatics, but it could also be a bug in your system installation.

Curses-based systems date back to an era when people connected to a computer via dumb terminals. Each terminal
needed different control character sequences to tell it what to do. These differences are handled by curses, which

37

https://termux.com
http://pillow.readthedocs.io/en/latest/installation.html#external-libraries
http://stackoverflow.com/q/24646305/4994021

asciimatics Documentation, Release 1.13.1

picks the right definition based on your TERM environment variable. If you have the wrong terminal definition, you
may find that curses believes some fundamental services are unavailable to your application. In particular, if you use
xterm-color, you are using a definition of xterm that dates back to 1996 and will see errors like this, where the
critical point is thet a curses function returned an unexpected error (the “ERR” result).

Traceback (most recent call last):
File "demo.py", line 18, in <module>

Screen.wrapper(demo)
File "./lib/python3.6/site-packages/asciimatics/screen.py", line 1162, in wrapper

unicode_aware=unicode_aware)
File "./lib/python3.6/site-packages/asciimatics/screen.py", line 1131, in open

unicode_aware=unicode_aware)
File "./lib/python3.6/site-packages/asciimatics/screen.py", line 2001, in __init__

curses.curs_set(0)
_curses.error: curs_set() returned ERR

The fix is to use a more modern terminal definition like xterm or xterm-256color.

7.3 256 colours not working

By default a lot of terminals will only support 8/16 colours. Windows users are limited to just these options for a native
Windows console. However other systems can enable extra colours by picking a terminal that supports the extended
colour palettes. For details of which terminals support additional colours and how to enable them see this Wikipedia
article.

In most cases, simply selecting a terminal type of xterm-256color will usually do the trick these days.

7.4 My colours are wrong

When picking colours you may find that your selection doesn’t have the desired effect. This is because terminals have
a nasty habit of using different definitions of the standard colours.

Asciimatics relies on the ANSI colour set for its standard settings. As you can see here each terminal has its own
interpretation of the exact colour. However, you can usually tweak that in your terminal settings. For example, iTerm
on Mac uses a dark grey for black, which you can change as shown below.

38 Chapter 7. Troubleshooting

https://en.wikipedia.org/wiki/Comparison_of_terminal_emulators
https://en.wikipedia.org/wiki/Comparison_of_terminal_emulators
https://en.wikipedia.org/wiki/ANSI_escape_code#Colors

asciimatics Documentation, Release 1.13.1

7.5 The color theme resets when I resize the terminal

There was a bug where asciimatics would not maintain its own colour themes on resize. This has been fixed as of early
2020. You should just upgrade to the latest version to fix this.

However, there are also some other applications that change the terminal colour scheme on startup using the terminal’s
control sequences. These will not be invoked by asciimatics on a resize event. If you use such an application, you will
need to invoke the control sequences yourself.

For example, to re-apply a pywal color theme:

from pathlib import Path
from asciimatics.screen import ManagedScreen

with ManagedScreen() as screen:
do stuff
if screen.has_resized():

wal_sequences = Path.home() / ".cache" / "wal" / "sequences"
try:

with wal_sequences.open("rb") as fd:
contents = fd.read()
sys.stdout.buffer.write(contents)

except Exception:
pass

7.5. The color theme resets when I resize the terminal 39

https://github.com/dylanaraps/pywal

asciimatics Documentation, Release 1.13.1

7.6 Mouse support not working

7.6.1 Curses systems

Mouse support isn’t fully enabled by default on all terminal types. This will often require some extra extensions to be
enabled as described here. In addition, if you want 256 colours, you will need to mix modes as described here.

Although it is possible to get Linux terminals to report all mouse movement, the reporting of mouse buttons along
with movement appears to be highly erratic. The best reporting appears to be using the button event mode - i.e. mixing
xterm-1002 with xterm-256color.

7.6.2 Windows

Asciimatics will reprogram the Windows console to report mouse events on start-up. However, it is possible to change
this while the application is running. In particular, if you switch on QuickEdit mode, Windows will stop reporting
mouse events and process them itself. It is not possible to have both, so if you want to use the mouse in your app,
please switch off QuickEdit mode.

7.7 Windows title does not change

Much like mouse support, the commands to set the window title is not supported on all terminal types. Windows
should work without any changes. Other systems may need to use a similar method as above to mix modes to add
status line support as described here.

7.8 Why can’t I detect all key combinations?

Asciimatics is designed to run in terminals. These date back decades and so have many restrictions that were perfectly
reasonable back then, but seem incomprehensible these days. The biggest one by a long way is that they can’t detect
exactly what the user types, even though computers have been able to detect exactly which key is being pressed (and
when it is released) for a very long time.

The fundamental reason for this limitation is that there is no standard for the terminal emulators to tell the application
more than a limited set of keys (typically lower and upper case characters, a random smattering of special keys and
then some basic control/shift modifiers). While some terminals do try to do a little better, the coverage is patchy and
inconsistent.

Until this improves the only way to get this sort of information is to run a system-wide keyboard hook, using something
the the keyboard package on pypi. Unfortunately, this requires that you run as root and will not work on remote
terminal sessions (e.g. over an SSH connection).

For more details, you can read https://invisible-island.net/ncurses/ncurses.faq.html#modified_keys or https://blog.
robertelder.org/detect-keyup-event-linux-terminal/.

7.9 Ctrl+S does not work

In order to maintain legacy support for real terminal systems, most terminals/consoles still support software flow
control using Ctrl+S/Ctrl+Q. You can switch this off on Linux by typing stty -ixon in your shell before you start
asciimatics as explained here. Sadly, there is nothing that can be done on Windows to prevent this as it is built in to
the operating system, so you will never be able to detect the Ctrl+S key. See here for details.

40 Chapter 7. Troubleshooting

http://unix.stackexchange.com/questions/35021/how-to-configure-the-terminal-so-that-a-mouse-click-will-move-the-cursor-to-the
http://stackoverflow.com/questions/29020638/which-term-to-use-to-have-both-256-colors-and-mouse-move-events-in-python-curse
https://gist.github.com/KevinGoodsell/744284
https://invisible-island.net/ncurses/ncurses.faq.html#modified_keys
https://blog.robertelder.org/detect-keyup-event-linux-terminal/
https://blog.robertelder.org/detect-keyup-event-linux-terminal/
http://unix.stackexchange.com/questions/12107/how-to-unfreeze-after-accidentally-pressing-ctrl-s-in-a-terminal
http://stackoverflow.com/questions/26436581/is-it-possible-to-disable-system-console-xoff-xon-flow-control-processing-in-my

asciimatics Documentation, Release 1.13.1

7.10 Backspace or delete are not working

Some users have reported this on curses systems. So far this has been tracked down to issues with the terminal
configuration. For an in-depth explanation of the problem and several possible solutions see here and here.

This seems to be particularly problematic for Mac OS X users, where the default terminal app as shipped with the OS
doesn’t match the terminfo definitions. Genius! If you’re on OSX, running the following inside your terminal should
fix up the mismatch.

infocmp "$TERM" | sed -Ee 's/(kbs)=[^,]*/\1=\\177/' -e 's/(kdch1)=[^,]*/\1=\\E[3~/' >
→˓"$TERM"
tic "$TERM"
rm -f "$TERM"

In an attempt to minimize the number of affected platforms, asciimatics v1.9.0 and later will also check the OS terminal
definitions for ERASE and use that for backspace if it differs from the curses terminal definition.

7.11 There’s a big delay when I press Escape

This is a well-known default operation for ncurses. As documented here you need to set the ESCDELAY environment
variable before opening the Screen so that ncurses uses a shorter delay.

7.12 I can’t run it inside PyCharm or other IDEs

Depending on which version you’re using, you may see pywintypes.error 6 (ERROR_INVALID_HANDLE), or simply
nothing (i.e. it looks like the program has hung). The reason for this is that the IDE Terminal/Console is not a true
native terminal/console and so the native interfaces used by asciimatics will not work. There are 2 workarounds.

1. PyCharm, both Professional and Community editions, now offers an option to emulate console output directly
in PyCharm. To enable this functionality, see Run | Edit Configurations | Configuration | Execution | Emulate
terminal in output console.

2. Alternatively, you can just run asciimatics inside a real terminal or window - i.e. not inside PyCharm/the IDE.
For example, you can force a real console from the Terminal window using start cmd /c “python <your file
name>”.

7.13 It runs differently/does not work inside PyCharm

While PyCharm’s terminal support is constantly improving, it is not perfect and so there are still cases where the
imperfections cause glitches in asciimatics applications. This is most common on Windows (e.g. unexpected keys
detected on resizing), but it is not just a Windows issue.

If you hit such glitches, the first thing to do is check whether you can also see them on a native terminal/console
window of your operating system. If you can’t reproduce on the native terminal/console, you need to raise the bug
with JetBrains.

7.10. Backspace or delete are not working 41

http://www.ibb.net/~anne/keyboard.html
http://invisible-island.net/xterm/xterm.faq.html#xterm_erase
https://stackoverflow.com/a/28020568/4994021

asciimatics Documentation, Release 1.13.1

7.14 Unicode characters are not working

7.14.1 Curses systems

Most modern versions of Linux/OSX come with a good selection of glyphs supported as standard. The most likely
issue is that you are not using a UTF-8 locale.

To set this up, follow the instructions here for OSX or here for Linux.

If that doesn’t solve the problem and you are seeing unexpected lines in your block drawing characters, you are using
a Terminal with extra spacing between your lines.

OSX allows you to edit the spacing as explained here, but Linux users will probably need to install a different terminal
as explained here. I have found that rxvt-unicode-256color is most likely to work.

7.14.2 Windows

On Windows systems, there are a couple of potential issues. The first is that you might be using the wrong code page.
Windows comes with many code pages. By default, asciimatics will only enable unicode features if you are using
code page 65001 (the UTF-8 code page). You can fix this issue by running:

chcp 65001

If this does not solve the issue, the next possibility is that you may be using the Lucida Console or Consolas fonts.
These do not have a full enough range of glyphs to support all the unicode output that asciimatics can generate.

To fix this issue, you need to download a font with a wider range of glyphs and then install them as the default for
your command prompt. Details of how to do that are available here. I recommend that you use the DejaVu Mono font,
which you can extract from the ZIP file from the download page - it is DejaVuSansMono.ttf in the TTF folder of the
ZIP.

7.15 Redirecting STDIN

Generally speaking, it is not recommended that you try to do this as it will prevent asciimatics from being able to read
the terminal input. However, if you must do this, this question on StackOverflow should give you some help on how
to reconnect terminal input on curses based systems.

7.16 It’s just not working at all

Some people have reported truly strange issues where things simply don’t start up at all. Symptoms vary wildly from
blank screens to other applications or tests running instead.

If you are hitting something like this, check that you haven’t created a file called test.py in your project. This is
because the future package, which asciimatics uses for compatibility with Python 2 and 3, imports the test package.
If you happen to have a file called test.py in your project, this import could pick up your file instead of the built-in
package.

Shout out to Andrew Penniman for spotting and solving this one!

42 Chapter 7. Troubleshooting

http://stackoverflow.com/q/7165108/4994021
http://serverfault.com/q/275403
http://superuser.com/questions/350821/how-can-i-change-the-line-height-in-terminal-osx
http://askubuntu.com/questions/194264/how-do-i-change-the-line-spacing-in-terminal
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).asp
http://www.techrepublic.com/blog/windows-and-office/quick-tip-add-fonts-to-the-command-prompt/
http://dejavu-fonts.org/wiki/Main_Page
http://dejavu-fonts.org/wiki/Download
http://stackoverflow.com/q/3999114/4994021

asciimatics Documentation, Release 1.13.1

7.17 It’s too slow!

When people say this, they either mean that asciimatics is using too much CPU, or that it is unresponsive in some
scenario. Either way, the solution is to reduce the work being done behind the scenes for your application. At a
high-level you have 3 options.

1. Switch off any animations you don’t need.

2. Move to a more responsive input loop.

3. Use a faster implementation of the underlying infrastructure.

Lets look at these options in more detail. . .

7.17.1 Switch off animations

The key to this optimization is to understand what you’re drawing when. The biggest cost in the mainline loop is the
actual re-drawing of all the content to the double-buffers, so asciimatics only does this when it knows something has,
or may have, changed. You give hints to asciimatics as you construct your application - for example the rate at which a
Print Effect needs to redraw, or whether you want to minimize CPU usage inside a Frame. It then uses these hints
and the current application state to decide whether to draw a new frame into the double-buffer.

The first thing to look at is things that are not actually changing. For example if you use the Print Effect to display
a static piece of text (like a FigletText renderer), the output never changes and so you only need to draw it once.
in such cases, you should tell the Effect that it is pointless to refresh by specifying speed=0 on construction.

Next you should consider removing unnecessary Effects. This is only really an option for TUI systems. Simply avoid
adding other Effects into your Scene and keep it down the to the Frame for your user input.

Finally, consider switching off the cursor animation if you really need to minimize CPU usage. You can do this by
setting reduce_cpu=True when constructing your Frame.

7.17.2 Input responsiveness

First things first, you should make sure that you’re running at least version 1.11. Once you have that installed, you
can use the allow_int option in play() to permit mouse and keyboard input to interrupt the normal frame refresh
rate.

This should prevent users from seeing any delay in refreshes when they press a key. However there is a downside
to this option - it will slightly mess up the timings for any animations, so it is only recommended to use it in TUI
applications.

7.17.3 Use faster infrastructure

Asciimatics needs to do a lot of array manipulation in order to provide equivalent features to ncurses. In v1.11, I
benchmarked various options and optimized the buffering to use the fastest version. If you haven’t already moved to
that version (or later), please do that now.

From here you have the usual options to speed up such calculations further.

1. Use numpy - which is a native C package to optimize array calculations

2. Use pypy - which is an optimized version of the Python language.

Right now, asciimatics doesn’t support numpy, because I only got marginal gains when I made the prototype for 1.11.
However, I got significant improvements from pypy and so I’d definitely recommend considering this option.

7.17. It’s too slow! 43

asciimatics Documentation, Release 1.13.1

For example, running some samples for 20s on my test machine, I got the following results:

julia.py Average CPU
Python 2.7 (1.10) 54.8%
Python 2.7 (1.11) 47.8%
Pypy 6.0 20.0%

experimental.py Average CPU
Python 2.7 (1.10) 100.0%
Python 2.7 (1.11) 71.4%
Pypy 6.0 34.3%

Note that the v1.10 test for experimental.py was actually CPU-bound and so slow it was visibly juddering.

44 Chapter 7. Troubleshooting

CHAPTER 8

asciimatics

8.1 asciimatics package

8.1.1 Subpackages

asciimatics.renderers package

Submodules

asciimatics.renderers.base module

This module provides common code for all Renderers.

asciimatics.renderers.base.ATTRIBUTES = {'1': 1, '2': 2, '3': 3, '4': 4}
Attribute conversion table for the ${c,a} form of attributes for paint.

class asciimatics.renderers.base.DynamicRenderer(height, width, clear=True)
Bases: asciimatics.renderers.base.Renderer

A DynamicRenderer is a Renderer that creates each image as requested. It has a defined maximum size on
construction.

Parameters

• height – The max height of the rendered image.

• width – The max width of the rendered image.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

45

asciimatics Documentation, Release 1.13.1

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.base.Renderer
Bases: object

A Renderer is simply a class that will return one or more text renderings for display by an Effect.

In the simple case, this can be a single string that contains some unchanging content - e.g. a simple text message.

It can also represent a sequence of strings that can be played one after the other to make a simple animation
sequence - e.g. a rotating globe.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.base.StaticRenderer(images=None, animation=None)
Bases: asciimatics.renderers.base.Renderer

A StaticRenderer is a Renderer that can create all possible images in advance. After construction the images
will not change, but can by cycled for animation purposes.

This class will also convert text like ${c,a,b} into colour c, attribute a and background b for any subsequent text
in the line, thus allowing multi-coloured text. The attribute and background are optional.

Parameters

• images – An optional set of ascii images to be rendered.

• animation – A function to pick the image (from images) to be rendered for any given
frame.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

46 Chapter 8. asciimatics

https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

asciimatics.renderers.box module

This module implements an ASCII box renderer.

class asciimatics.renderers.box.Box(width, height, uni=False, style=1)
Bases: asciimatics.renderers.base.StaticRenderer

Renders a simple box using ASCII characters. This does not render in extended box drawing characters as that
requires non-ASCII characters in Windows and direct access to curses in Linux.

Parameters

• width – width of box

• height – height of box

• uni – True to use UNICODE character set, defaults to False

• style – desired line style, based on line style definitions in constants: ASCII_LINE,
SINGLE_LINE, DOUBLE_LINE. uni parameter takes precedence and the style will be ig-
nored if uni==False

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.charts module

This module implements bar chart renderers.

class asciimatics.renderers.charts.BarChart(height, width, functions, char=’#’, colour=2,
bg=0, gradient=None, scale=None, axes=2,
intervals=None, labels=False, border=True,
keys=None, gap=None)

Bases: asciimatics.renderers.charts._BarChartBase

Renderer to create a horizontal bar chart using the specified functions as inputs for each entry. Can be used to
chart distributions or for more graphical effect - e.g. to imitate a sound equalizer or a progress indicator.

Parameters

• height – The max height of the rendered image.

• width – The max width of the rendered image.

• functions – List of functions to chart.

• char – Character to use for the bar. Defaults to ‘#’

• colour – Colour(s) to use for the bars. This can be a single value or list of values (to cycle
around for each bar). Defaults to green.

8.1. asciimatics package 47

asciimatics Documentation, Release 1.13.1

• bg – Background colour to use for the bars. This can be a single value or list of values (to
cycle around for each bar). Defaults to black.

• gradient – Colour gradient to use for the bars. This is a list of tuple pairs specifying
a threshold and a colour, or triplets to include a background colour too. Defaults to no
gradients.

• scale – Maximum value for the bars. This is used to scale the function values to the
maximum space available. Any value over this will be truncated when drawn. Defaults to
the number of available characters in the chart.

• axes – Which axes to draw.

• intervals – Units for interval markers on the main axis. Defaults to none.

• labels – Whether to draw size indication labels on the x-axis.

• border – Whether to draw a border around the chart.

• keys – Optional keys to name each bar on the y-axis.

• gap – distance between bars. A value of None will auto-calculate (default).

If the scale parameter is not specified, the maximum length of the bar is based on the available space. A chart
with no borders, no axes, no keys or labels will have a bar length based solely on the width of the graph.

• Borders use 4 characters height and 6 characters width

• Keys use the width of the widest key plus 1

• Labels use a height of 1

• An X_AXIS uses a height of 1

• A Y_AXIS uses a width of 1

axes_style
The current drawing style of the axes. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

• SINGLE_LINE – UNICODE based single line

Note that your canvas must support UNICODE style characters to use them

border_style
The current drawing style of the border. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

• SINGLE_LINE – UNICODE based single line

• DOUBLE_LINE – UNICODE based double line

Note that your canvas must support UNICODE style characters to use them

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

48 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.charts.VBarChart(height, width, functions, char=’#’,
colour=2, bg=0, gradient=None,
scale=None, axes=1, intervals=None,
labels=False, border=True, keys=None,
gap=None)

Bases: asciimatics.renderers.charts._BarChartBase

Renderer to create a vertical bar chart using the specified functions as inputs for each entry. Can be used to chart
distributions or for more graphical effect - e.g. to imitate a sound equalizer or a progress indicator.

Parameters

• height – The max height of the rendered image.

• width – The max width of the rendered image.

• functions – List of functions to chart.

• char – Character to use for the bar. Defaults to ‘#’

• colour – Colour(s) to use for the bars. This can be a single value or list of values (to cycle
around for each bar). Defaults to green.

• bg – Background colour to use for the bars. This can be a single value or list of values (to
cycle around for each bar). Defaults to black.

• gradient – Colour gradient to use for the bars. This is a list of tuple pairs specifying
a threshold and a colour, or triplets to include a background colour too. Defaults to no
gradients.

• scale – Maximum value for the bars. This is used to scale the function values to the
maximum space available. Any value over this will be truncated when drawn. Defaults to
the number of available characters in the chart.

• axes – Which axes to draw.

• intervals – Units for interval markers on the main axis. Defaults to none.

• labels – Whether to draw size indication labels on the y-axis.

• border – Whether to draw a border around the chart.

• keys – Optional keys to name each bar on the x-axis.

• gap – distance between bars. A value of None will auto-calculate (default). Minimum
value when auto-calculated is 1, for no gaps specify 0.

If the scale parameter is not specified, the maximum length of the bar is based on the available space. A chart
with no borders, no axes, no keys or labels will have a bar height based solely on the width of the graph.

• Borders use 4 characters height and 6 characters width

• Keys use a height of 1

• Labels vertical bar chart use the width of the widest label plus 1 (label values depend on the scale of the
chart)

• An X_AXIS uses a height of 1

• A Y_AXIS uses a width of 1

axes_style
The current drawing style of the axes. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

8.1. asciimatics package 49

asciimatics Documentation, Release 1.13.1

• SINGLE_LINE – UNICODE based single line

Note that your canvas must support UNICODE style characters to use them

border_style
The current drawing style of the border. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

• SINGLE_LINE – UNICODE based single line

• DOUBLE_LINE – UNICODE based double line

Note that your canvas must support UNICODE style characters to use them

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.figlettext module

This module implements Figlet text renderer.

class asciimatics.renderers.figlettext.FigletText(text, font=’standard’, width=200)
Bases: asciimatics.renderers.base.StaticRenderer

This class renders the supplied text using the specified Figlet font. See http://www.figlet.org/ for details of
available fonts.

Parameters

• text – The text string to convert with Figlet.

• font – The Figlet font to use (optional).

• width – The maximum width for this text in characters.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

50 Chapter 8. asciimatics

http://www.figlet.org/

asciimatics Documentation, Release 1.13.1

asciimatics.renderers.fire module

This module implements a fire effect renderer.

class asciimatics.renderers.fire.Fire(height, width, emitter, intensity, spot, colours,
bg=False)

Bases: asciimatics.renderers.base.DynamicRenderer

Renderer to create a fire effect based on a specified emitter that defines the heat source.

The implementation here uses the same techniques described in http://freespace.virgin.net/hugo.elias/models/
m_fire.htm, although a slightly different implementation.

Parameters

• height – Height of the box to contain the flames.

• width – Width of the box to contain the flames.

• emitter – Heat source for the flames. Any non-whitespace character is treated as part of
the heat source.

• intensity – The strength of the flames. The bigger the number, the hotter the fire. 0 <=
intensity <= 1.0.

• spot – Heat of each spot source. Must be an integer > 0.

• colours – Number of colours the screen supports.

• bg – (Optional) Whether to render background colours only.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.fire.random()→ x in the interval [0, 1).

asciimatics.renderers.images module

This module implements renderers that produce content based on image files.

class asciimatics.renderers.images.ColourImageFile(screen, filename, height=30,
bg=0, fill_background=False,
uni=False, dither=False)

Bases: asciimatics.renderers.base.StaticRenderer

Renderer to convert an image file (as supported by the Python Imaging Library) into an block image of available
colours.

8.1. asciimatics package 51

http://freespace.virgin.net/hugo.elias/models/m_fire.htm
http://freespace.virgin.net/hugo.elias/models/m_fire.htm

asciimatics Documentation, Release 1.13.1

Warning: This is only compatible with 256-colour terminals. Results in other terminals with reduced
colour capabilities are severely restricted. Since Windows only has 8 base colours, it is recommended that
you avoid this renderer on that platform.

Parameters

• screen – The screen to use when displaying the image.

• filename – The name of the file to render.

• height – The height of the text rendered image.

• bg – The default background colour for this image.

• fill_background – Whether to set background colours too.

• uni – Whether to use unicode box characters or not.

• dither – Whether to dither the rendered image or not.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.images.ImageFile(filename, height=30, colours=8)
Bases: asciimatics.renderers.base.StaticRenderer

Renderer to convert an image file (as supported by the Python Imaging Library) into an ascii grey scale text
image.

Parameters

• filename – The name of the file to render.

• height – The height of the text rendered image.

• colours – The number of colours the terminal supports.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

52 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

asciimatics.renderers.kaleidoscope module

This module implements a kaeldioscope effect renderer.

class asciimatics.renderers.kaleidoscope.Kaleidoscope(height, width, cell, symmetry)
Bases: asciimatics.renderers.base.DynamicRenderer

Renderer to create a 2-mirror kaleidoscope effect.

This is a chained renderer (i.e. it acts upon the output of another Renderer which is passed to it on construction).
The other Renderer is used as the cell that is rotated over time to create the animation.

You can specify the desired rotational symmetry of the kaleidoscope (which determines the angle between the
mirrors). If you chose values of less than 2, you are effectively removing one or both mirrors, thus either getting
the original cell or a simple mirrored image of the cell.

Since this renderer rotates the background cell, it needs operate on square pixels, which means each character
in the cell is drawn as 2 next to each other on the screen. In other words the cell needs to be half the width of
the desired output (when measured in text characters).

Parameters

• height – Height of the box to contain the kaleidoscope.

• width – Width of the box to contain the kaleidoscope.

• cell – A Renderer to use as the backing cell for the kaleidoscope.

• symmetry – The desired rotational symmetry. Must be a non-negative integer.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.old module

asciimatics.renderers.plasma module

This module implements a plasma effect renderer.

class asciimatics.renderers.plasma.Plasma(height, width, colours)
Bases: asciimatics.renderers.base.DynamicRenderer

Renderer to create a “plasma” effect using sinusoidal functions.

The implementation here uses the same techniques described in http://lodev.org/cgtutor/plasma.html

Parameters

• height – Height of the box to contain the plasma.

• width – Width of the box to contain the plasma.

8.1. asciimatics package 53

http://lodev.org/cgtutor/plasma.html

asciimatics Documentation, Release 1.13.1

• colours – Number of colours the screen supports.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.players module

This module implements renderers that play content to the screen.

class asciimatics.renderers.players.AbstractScreenPlayer(height, width)
Bases: asciimatics.renderers.base.DynamicRenderer

Abstract renderer to play terminal text with support for ANSI control codes.

Parameters

• height – required height of the renderer.

• width – required width of the renderer.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.players.AnsiArtPlayer(filename, height=25, width=80,
encoding=’cp437’, strip=False,
rate=2)

Bases: asciimatics.renderers.players.AbstractScreenPlayer

Renderer to play ANSI art text files.

In order to tidy up files, this must be used as a context manager (i.e. using with).

Parameters

• filename – the file containingi the ANSI art.

• height – required height of the renderer.

• width – required width of the renderer.

• encoding – text encoding ofnthe file.

54 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• strip – whether to strip CRLF from the file content.

• rate – number of lines to render on each update.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.players.AsciinemaPlayer(filename, height=None,
width=None, max_delay=None)

Bases: asciimatics.renderers.players.AbstractScreenPlayer

Renderer to play terminal recordings created by asciinema.

This only supports the version 2 file format. Use the max_delay setting to speed up human interactions (i.e. to
reduce delays from typing).

In order to tidy up files, this must be used as a context manager (i.e. using with).

Parameters

• filename – the file containingi the ANSI art.

• height – required height of the renderer.

• width – required width of the renderer.

• max_delay – maximum time interval (in secs) to wait between frame updates.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.rainbow module

This module implements a rainbow effect renderer.

class asciimatics.renderers.rainbow.Rainbow(screen, renderer)
Bases: asciimatics.renderers.base.StaticRenderer

Chained renderer to add rainbow colours to output of another renderer. The embedded rendered must not use
multi-colour mode (i.e. ${c,a} mark-ups) as these will be converted to explicit text by this renderer.

Parameters

8.1. asciimatics package 55

asciimatics Documentation, Release 1.13.1

• screen – The screen object for this renderer.

• renderer – The renderer to wrap.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.rotatedduplicate module

This module implements a renderer that renders another renderer but rotated.

class asciimatics.renderers.rotatedduplicate.RotatedDuplicate(width, height, ren-
derer)

Bases: asciimatics.renderers.base.StaticRenderer

Chained renderer to add a rotated version of the original renderer underneath and centre the whole thing within
within the specified dimensions.

Parameters

• width – The maximum width of the rendered text.

• height – The maximum height of the rendered text.

• renderer – The renderer to wrap.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.scales module

This module implements renderers that show measuring scales to the screen.

class asciimatics.renderers.scales.Scale(width)
Bases: asciimatics.renderers.base.StaticRenderer

This renders a linear scale, useful for debugging positions of your creations. Every 5 spaces gets a tick mark,
every 10 a number.

56 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

Parameters width – The width of the scale

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.scales.VScale(height)
Bases: asciimatics.renderers.base.StaticRenderer

This renders a vertical linear scale, useful for debugging positions of your creations. Writes lowest significant
digit of a count running vertically.

Parameters width – The width of the scale

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.renderers.speechbubble module

This module implements a speech-bubble effect renderer.

class asciimatics.renderers.speechbubble.SpeechBubble(text, tail=None, uni=False)
Bases: asciimatics.renderers.base.StaticRenderer

Renders supplied text into a speech bubble.

Parameters

• text – The text to be put into a speech bubble.

• tail – Where to put the bubble callout tail, specifying “L” or “R” for left or right tails.
Can be None for no tail.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

8.1. asciimatics package 57

asciimatics Documentation, Release 1.13.1

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

Module contents

This module provides Renderers to create complex animation effects. For more details see http://asciimatics.
readthedocs.io/en/latest/rendering.html

class asciimatics.renderers.Renderer
Bases: object

A Renderer is simply a class that will return one or more text renderings for display by an Effect.

In the simple case, this can be a single string that contains some unchanging content - e.g. a simple text message.

It can also represent a sequence of strings that can be played one after the other to make a simple animation
sequence - e.g. a rotating globe.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.StaticRenderer(images=None, animation=None)
Bases: asciimatics.renderers.base.Renderer

A StaticRenderer is a Renderer that can create all possible images in advance. After construction the images
will not change, but can by cycled for animation purposes.

This class will also convert text like ${c,a,b} into colour c, attribute a and background b for any subsequent text
in the line, thus allowing multi-coloured text. The attribute and background are optional.

Parameters

• images – An optional set of ascii images to be rendered.

• animation – A function to pick the image (from images) to be rendered for any given
frame.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

58 Chapter 8. asciimatics

http://asciimatics.readthedocs.io/en/latest/rendering.html
http://asciimatics.readthedocs.io/en/latest/rendering.html
https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.DynamicRenderer(height, width, clear=True)
Bases: asciimatics.renderers.base.Renderer

A DynamicRenderer is a Renderer that creates each image as requested. It has a defined maximum size on
construction.

Parameters

• height – The max height of the rendered image.

• width – The max width of the rendered image.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.Box(width, height, uni=False, style=1)
Bases: asciimatics.renderers.base.StaticRenderer

Renders a simple box using ASCII characters. This does not render in extended box drawing characters as that
requires non-ASCII characters in Windows and direct access to curses in Linux.

Parameters

• width – width of box

• height – height of box

• uni – True to use UNICODE character set, defaults to False

• style – desired line style, based on line style definitions in constants: ASCII_LINE,
SINGLE_LINE, DOUBLE_LINE. uni parameter takes precedence and the style will be ig-
nored if uni==False

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.BarChart(height, width, functions, char=’#’, colour=2, bg=0,
gradient=None, scale=None, axes=2, intervals=None,
labels=False, border=True, keys=None, gap=None)

Bases: asciimatics.renderers.charts._BarChartBase

8.1. asciimatics package 59

asciimatics Documentation, Release 1.13.1

Renderer to create a horizontal bar chart using the specified functions as inputs for each entry. Can be used to
chart distributions or for more graphical effect - e.g. to imitate a sound equalizer or a progress indicator.

Parameters

• height – The max height of the rendered image.

• width – The max width of the rendered image.

• functions – List of functions to chart.

• char – Character to use for the bar. Defaults to ‘#’

• colour – Colour(s) to use for the bars. This can be a single value or list of values (to cycle
around for each bar). Defaults to green.

• bg – Background colour to use for the bars. This can be a single value or list of values (to
cycle around for each bar). Defaults to black.

• gradient – Colour gradient to use for the bars. This is a list of tuple pairs specifying
a threshold and a colour, or triplets to include a background colour too. Defaults to no
gradients.

• scale – Maximum value for the bars. This is used to scale the function values to the
maximum space available. Any value over this will be truncated when drawn. Defaults to
the number of available characters in the chart.

• axes – Which axes to draw.

• intervals – Units for interval markers on the main axis. Defaults to none.

• labels – Whether to draw size indication labels on the x-axis.

• border – Whether to draw a border around the chart.

• keys – Optional keys to name each bar on the y-axis.

• gap – distance between bars. A value of None will auto-calculate (default).

If the scale parameter is not specified, the maximum length of the bar is based on the available space. A chart
with no borders, no axes, no keys or labels will have a bar length based solely on the width of the graph.

• Borders use 4 characters height and 6 characters width

• Keys use the width of the widest key plus 1

• Labels use a height of 1

• An X_AXIS uses a height of 1

• A Y_AXIS uses a width of 1

axes_style
The current drawing style of the axes. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

• SINGLE_LINE – UNICODE based single line

Note that your canvas must support UNICODE style characters to use them

border_style
The current drawing style of the border. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

• SINGLE_LINE – UNICODE based single line

60 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• DOUBLE_LINE – UNICODE based double line

Note that your canvas must support UNICODE style characters to use them

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.VBarChart(height, width, functions, char=’#’, colour=2,
bg=0, gradient=None, scale=None, axes=1, inter-
vals=None, labels=False, border=True, keys=None,
gap=None)

Bases: asciimatics.renderers.charts._BarChartBase

Renderer to create a vertical bar chart using the specified functions as inputs for each entry. Can be used to chart
distributions or for more graphical effect - e.g. to imitate a sound equalizer or a progress indicator.

Parameters

• height – The max height of the rendered image.

• width – The max width of the rendered image.

• functions – List of functions to chart.

• char – Character to use for the bar. Defaults to ‘#’

• colour – Colour(s) to use for the bars. This can be a single value or list of values (to cycle
around for each bar). Defaults to green.

• bg – Background colour to use for the bars. This can be a single value or list of values (to
cycle around for each bar). Defaults to black.

• gradient – Colour gradient to use for the bars. This is a list of tuple pairs specifying
a threshold and a colour, or triplets to include a background colour too. Defaults to no
gradients.

• scale – Maximum value for the bars. This is used to scale the function values to the
maximum space available. Any value over this will be truncated when drawn. Defaults to
the number of available characters in the chart.

• axes – Which axes to draw.

• intervals – Units for interval markers on the main axis. Defaults to none.

• labels – Whether to draw size indication labels on the y-axis.

• border – Whether to draw a border around the chart.

• keys – Optional keys to name each bar on the x-axis.

• gap – distance between bars. A value of None will auto-calculate (default). Minimum
value when auto-calculated is 1, for no gaps specify 0.

If the scale parameter is not specified, the maximum length of the bar is based on the available space. A chart
with no borders, no axes, no keys or labels will have a bar height based solely on the width of the graph.

8.1. asciimatics package 61

asciimatics Documentation, Release 1.13.1

• Borders use 4 characters height and 6 characters width

• Keys use a height of 1

• Labels vertical bar chart use the width of the widest label plus 1 (label values depend on the scale of the
chart)

• An X_AXIS uses a height of 1

• A Y_AXIS uses a width of 1

axes_style
The current drawing style of the axes. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

• SINGLE_LINE – UNICODE based single line

Note that your canvas must support UNICODE style characters to use them

border_style
The current drawing style of the border. Possible values are defined in constants:

• ASCII_LINE – ASCII safe characters

• SINGLE_LINE – UNICODE based single line

• DOUBLE_LINE – UNICODE based double line

Note that your canvas must support UNICODE style characters to use them

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.FigletText(text, font=’standard’, width=200)
Bases: asciimatics.renderers.base.StaticRenderer

This class renders the supplied text using the specified Figlet font. See http://www.figlet.org/ for details of
available fonts.

Parameters

• text – The text string to convert with Figlet.

• font – The Figlet font to use (optional).

• width – The maximum width for this text in characters.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

62 Chapter 8. asciimatics

http://www.figlet.org/

asciimatics Documentation, Release 1.13.1

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.Fire(height, width, emitter, intensity, spot, colours, bg=False)
Bases: asciimatics.renderers.base.DynamicRenderer

Renderer to create a fire effect based on a specified emitter that defines the heat source.

The implementation here uses the same techniques described in http://freespace.virgin.net/hugo.elias/models/
m_fire.htm, although a slightly different implementation.

Parameters

• height – Height of the box to contain the flames.

• width – Width of the box to contain the flames.

• emitter – Heat source for the flames. Any non-whitespace character is treated as part of
the heat source.

• intensity – The strength of the flames. The bigger the number, the hotter the fire. 0 <=
intensity <= 1.0.

• spot – Heat of each spot source. Must be an integer > 0.

• colours – Number of colours the screen supports.

• bg – (Optional) Whether to render background colours only.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.ImageFile(filename, height=30, colours=8)
Bases: asciimatics.renderers.base.StaticRenderer

Renderer to convert an image file (as supported by the Python Imaging Library) into an ascii grey scale text
image.

Parameters

• filename – The name of the file to render.

• height – The height of the text rendered image.

• colours – The number of colours the terminal supports.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

8.1. asciimatics package 63

http://freespace.virgin.net/hugo.elias/models/m_fire.htm
http://freespace.virgin.net/hugo.elias/models/m_fire.htm

asciimatics Documentation, Release 1.13.1

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.ColourImageFile(screen, filename, height=30, bg=0,
fill_background=False, uni=False,
dither=False)

Bases: asciimatics.renderers.base.StaticRenderer

Renderer to convert an image file (as supported by the Python Imaging Library) into an block image of available
colours.

Warning: This is only compatible with 256-colour terminals. Results in other terminals with reduced
colour capabilities are severely restricted. Since Windows only has 8 base colours, it is recommended that
you avoid this renderer on that platform.

Parameters

• screen – The screen to use when displaying the image.

• filename – The name of the file to render.

• height – The height of the text rendered image.

• bg – The default background colour for this image.

• fill_background – Whether to set background colours too.

• uni – Whether to use unicode box characters or not.

• dither – Whether to dither the rendered image or not.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.AbstractScreenPlayer(height, width)
Bases: asciimatics.renderers.base.DynamicRenderer

Abstract renderer to play terminal text with support for ANSI control codes.

Parameters

• height – required height of the renderer.

• width – required width of the renderer.

images

Returns An iterator of all the images in the Renderer.

64 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.AnsiArtPlayer(filename, height=25, width=80, encod-
ing=’cp437’, strip=False, rate=2)

Bases: asciimatics.renderers.players.AbstractScreenPlayer

Renderer to play ANSI art text files.

In order to tidy up files, this must be used as a context manager (i.e. using with).

Parameters

• filename – the file containingi the ANSI art.

• height – required height of the renderer.

• width – required width of the renderer.

• encoding – text encoding ofnthe file.

• strip – whether to strip CRLF from the file content.

• rate – number of lines to render on each update.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.AsciinemaPlayer(filename, height=None, width=None,
max_delay=None)

Bases: asciimatics.renderers.players.AbstractScreenPlayer

Renderer to play terminal recordings created by asciinema.

This only supports the version 2 file format. Use the max_delay setting to speed up human interactions (i.e. to
reduce delays from typing).

In order to tidy up files, this must be used as a context manager (i.e. using with).

Parameters

• filename – the file containingi the ANSI art.

• height – required height of the renderer.

• width – required width of the renderer.

• max_delay – maximum time interval (in secs) to wait between frame updates.

8.1. asciimatics package 65

asciimatics Documentation, Release 1.13.1

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.Kaleidoscope(height, width, cell, symmetry)
Bases: asciimatics.renderers.base.DynamicRenderer

Renderer to create a 2-mirror kaleidoscope effect.

This is a chained renderer (i.e. it acts upon the output of another Renderer which is passed to it on construction).
The other Renderer is used as the cell that is rotated over time to create the animation.

You can specify the desired rotational symmetry of the kaleidoscope (which determines the angle between the
mirrors). If you chose values of less than 2, you are effectively removing one or both mirrors, thus either getting
the original cell or a simple mirrored image of the cell.

Since this renderer rotates the background cell, it needs operate on square pixels, which means each character
in the cell is drawn as 2 next to each other on the screen. In other words the cell needs to be half the width of
the desired output (when measured in text characters).

Parameters

• height – Height of the box to contain the kaleidoscope.

• width – Width of the box to contain the kaleidoscope.

• cell – A Renderer to use as the backing cell for the kaleidoscope.

• symmetry – The desired rotational symmetry. Must be a non-negative integer.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.Plasma(height, width, colours)
Bases: asciimatics.renderers.base.DynamicRenderer

Renderer to create a “plasma” effect using sinusoidal functions.

The implementation here uses the same techniques described in http://lodev.org/cgtutor/plasma.html

Parameters

• height – Height of the box to contain the plasma.

66 Chapter 8. asciimatics

http://lodev.org/cgtutor/plasma.html

asciimatics Documentation, Release 1.13.1

• width – Width of the box to contain the plasma.

• colours – Number of colours the screen supports.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.Rainbow(screen, renderer)
Bases: asciimatics.renderers.base.StaticRenderer

Chained renderer to add rainbow colours to output of another renderer. The embedded rendered must not use
multi-colour mode (i.e. ${c,a} mark-ups) as these will be converted to explicit text by this renderer.

Parameters

• screen – The screen object for this renderer.

• renderer – The renderer to wrap.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.RotatedDuplicate(width, height, renderer)
Bases: asciimatics.renderers.base.StaticRenderer

Chained renderer to add a rotated version of the original renderer underneath and centre the whole thing within
within the specified dimensions.

Parameters

• width – The maximum width of the rendered text.

• height – The maximum height of the rendered text.

• renderer – The renderer to wrap.

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

8.1. asciimatics package 67

asciimatics Documentation, Release 1.13.1

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.Scale(width)
Bases: asciimatics.renderers.base.StaticRenderer

This renders a linear scale, useful for debugging positions of your creations. Every 5 spaces gets a tick mark,
every 10 a number.

Parameters width – The width of the scale

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.VScale(height)
Bases: asciimatics.renderers.base.StaticRenderer

This renders a vertical linear scale, useful for debugging positions of your creations. Writes lowest significant
digit of a count running vertically.

Parameters width – The width of the scale

images

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

class asciimatics.renderers.SpeechBubble(text, tail=None, uni=False)
Bases: asciimatics.renderers.base.StaticRenderer

Renders supplied text into a speech bubble.

Parameters

• text – The text to be put into a speech bubble.

• tail – Where to put the bubble callout tail, specifying “L” or “R” for left or right tails.
Can be None for no tail.

images

68 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

Returns An iterator of all the images in the Renderer.

max_height

Returns The max height of the rendered text (across all images if an animated renderer).

max_width

Returns The max width of the rendered text (across all images if an animated renderer).

rendered_text

Returns The next image and colour map in the sequence as a tuple.

asciimatics.widgets package

Submodules

asciimatics.widgets.baselistbox module

This is the baseclass for list box types

asciimatics.widgets.button module

This module defines a button widget

class asciimatics.widgets.button.Button(text, on_click, label=None, add_box=True,
name=None, **kwargs)

Bases: asciimatics.widgets.widget.Widget

A Button widget to be displayed in a Frame.

It is typically used to represent a desired action for te user to invoke (e.g. a submit button on a form).

Parameters

• text – The text for the button.

• on_click – The function to invoke when the button is clicked.

• label – An optional label for the widget.

• add_box – Whether to wrap the text with chevrons.

• name – The name of this widget.

Also see the common keyword arguments in Widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

8.1. asciimatics package 69

asciimatics Documentation, Release 1.13.1

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

70 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

text
The current text for this Button.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this Button.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.checkbox module

This module defines a checkbox widget

class asciimatics.widgets.checkbox.CheckBox(text, label=None, name=None,
on_change=None, **kwargs)

Bases: asciimatics.widgets.widget.Widget

A CheckBox widget is used to ask for Boolean (i.e. yes/no) input.

It consists of an optional label (typically used for the first in a group of CheckBoxes), the box and a field name.

Parameters

• text – The text to explain this specific field to the user.

• label – An optional label for the widget.

• name – The internal name for the widget.

• on_change – Optional function to call when text changes.

Also see the common keyword arguments in Widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

8.1. asciimatics package 71

asciimatics Documentation, Release 1.13.1

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

72 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this Checkbox.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.datepicker module

This module defines a datepicker widget

class asciimatics.widgets.datepicker.DatePicker(label=None, name=None,
year_range=None, on_change=None,
**kwargs)

Bases: asciimatics.widgets.widget.Widget

A DatePicker widget allows you to pick a date from a compact, temporary, pop-up Frame.

Parameters

• label – An optional label for the widget.

• name – The name for the widget.

• on_change – Optional function to call when the selected time changes.

Also see the common keyword arguments in Widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

8.1. asciimatics package 73

asciimatics Documentation, Release 1.13.1

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

74 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current selected date.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.divider module

This module defines a divider between widgets

class asciimatics.widgets.divider.Divider(draw_line=True, height=1, line_char=None)
Bases: asciimatics.widgets.widget.Widget

A divider to break up a group of widgets.

Parameters

• draw_line – Whether to draw a line in the centre of the gap.

• height – The required vertical gap.

• line_char – Optional character to use for drawing the line.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

8.1. asciimatics package 75

asciimatics Documentation, Release 1.13.1

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

76 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this Divider.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.dropdownlist module

This module defines a dropdown list widget

class asciimatics.widgets.dropdownlist.DropdownList(options, label=None,
name=None, on_change=None,
fit=None, **kwargs)

Bases: asciimatics.widgets.widget.Widget

This widget allows you to pick an item from a temporary pop-up list.

Parameters

• options – The options for each row in the widget.

• label – An optional label for the widget.

• name – The name for the widget.

• on_change – Optional function to call when the selected time changes.

• fit – Shrink width of dropdown to fit the width of options. Default False.

The options are a list of tuples, where the first value is the string to be displayed to the user and the second is an
interval value to identify the entry to the program. For example:

options=[(“First option”, 1), (“Second option”, 2)]

Also see the common keyword arguments in Widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

fit
Whether to shrink to largest element width or not.

8.1. asciimatics package 77

asciimatics Documentation, Release 1.13.1

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

options
The set of allowed options for the drop-down list.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

78 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this DropdownList.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.filebrowser module

This module defines a file browser selection

class asciimatics.widgets.filebrowser.FileBrowser(height, root, name=None,
on_select=None, on_change=None,
file_filter=None)

Bases: asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

A FileBrowser is a widget for finding a file on the local disk.

Parameters

• height – The desired height for this widget.

• root – The starting root directory to display in the widget.

• name – The name of this widget.

• on_select – Optional function that gets called when user selects a file (by pressing enter
or double-clicking).

• on_change – Optional function that gets called on any movement of the selection.

• file_filter – Optional RegEx string that can be passed in to filter the files to be dis-
played.

Most people will want to use a filter to finx files with a particular extension. In this case, you must use a regex
that matches to the end of the line - e.g. use “.*.txt$” to find files ending with “.txt”. This ensures that you don’t
accidentally pick up files containing the filter.

8.1. asciimatics package 79

asciimatics Documentation, Release 1.13.1

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

options
The list of options available for user selection

This is a list of tuples ([<col 1 string>, . . . , <col n string>], <internal value>).

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

80 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

start_line
The line that will be drawn at the top of the visible section of this list.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this list box.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.frame module

This module defines a class to display widgets

class asciimatics.widgets.frame.Frame(screen, height, width, data=None, on_load=None,
has_border=True, hover_focus=False, name=None,
title=None, x=None, y=None, has_shadow=False, re-
duce_cpu=False, is_modal=False, can_scroll=True)

Bases: asciimatics.effects.Effect

A Frame is a special Effect for controlling and displaying Widgets.

It is similar to a window as used in native GUI applications. Widgets are text UI elements that can be used to
create an interactive application within your Frame.

8.1. asciimatics package 81

asciimatics Documentation, Release 1.13.1

Parameters

• screen – The Screen that owns this Frame.

• width – The desired width of the Frame.

• height – The desired height of the Frame.

• data – optional data dict to initialize any widgets in the frame.

• on_load – optional function to call whenever the Frame reloads.

• has_border – Whether the frame has a border box. Defaults to True.

• hover_focus – Whether hovering a mouse over a widget (i.e. mouse move events) should
change the input focus. Defaults to false.

• name – Optional name to identify this Frame. This is used to reset data as needed from on
old copy after the screen resizes.

• title – Optional title to display if has_border is True.

• x – Optional x position for the top left corner of the Frame.

• y – Optional y position for the top left corner of the Frame.

• has_shadow – Optional flag to indicate if this Frame should have a shadow when drawn.

• reduce_cpu – Whether to minimize CPU usage (for use on low spec systems).

• is_modal – Whether this Frame is “modal” - i.e. will stop all other Effects from receiving
input events.

• can_scroll – Whether a scrollbar should be available on the border, or not.

add_effect(effect)
Add an Effect to the Frame.

Parameters effect – The Effect to be added.

add_layout(layout)
Add a Layout to the Frame.

Parameters layout – The Layout to be added.

border_box
Instance of BoxTool that specifies the characters used to draw the border to this frame. You can change
the border character style by modifying the style property on this object. Allowed styles are defined in
constants.

canvas
The Canvas that backs this Frame.

clone(_, scene)
Create a clone of this Frame into a new Screen.

Parameters

• _ – ignored.

• scene – The new Scene object to clone into.

data
Data dictionary containing values from the contained widgets.

delete_count
The number of frames before this Effect should be deleted.

82 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

find_widget(name)
Look for a widget with a specified name.

Parameters name – The name to search for.

Returns The widget that matches or None if one couldn’t be found.

fix()
Fix the layouts and calculate the locations of all the widgets.

This function should be called once all Layouts have been added to the Frame and all widgets added to the
Layouts.

focussed_widget
The widget that currently has the focus within this Frame.

frame_update_count
The number of frames before this Effect should be updated.

get_scroll_pos()
Get current position for scroll bar.

move_to(x, y, h)
Make the specified location visible. This is typically used by a widget to scroll the canvas such that it is
visible.

Parameters

• x – The x location to make visible.

• y – The y location to make visible.

• h – The height of the location to make visible.

palette = {}
Colour palette for the widgets within the Frame. Each entry should be a 3-tuple of (foreground colour,
attribute, background colour).

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

rebase_event(event)
Rebase the coordinates of the passed event to frame-relative coordinates.

Parameters event – The event to be rebased.

Returns A new event object appropriately re-based.

reduce_cpu
Whether this Frame should try to optimize refreshes to reduce CPU.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

8.1. asciimatics package 83

asciimatics Documentation, Release 1.13.1

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

save(validate=False)
Save the current values in all the widgets back to the persistent data storage.

Parameters validate – Whether to validate the data before saving.

Calling this while setting the data field (e.g. in a widget callback) will have no effect.

When validating data, it can throw an Exception for any

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

set_scroll_pos(pos)
Set current position for scroll bar.

set_theme(theme)
Pick a palette from the list of supported THEMES.

Parameters theme – The name of the theme to set.

stop_frame
Last frame for this effect. A value of zero means no specific end.

switch_focus(layout, column, widget)
Switch focus to the specified widget.

Parameters

• layout – The layout that owns the widget.

• column – The column the widget is in.

• widget – The index of the widget to take the focus.

title
Title for this Frame.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

asciimatics.widgets.label module

This mdoule implements a widget to give a text label

class asciimatics.widgets.label.Label(label, height=1, align=’<’, name=None)
Bases: asciimatics.widgets.widget.Widget

A text label.

Parameters

• label – The text to be displayed for the Label.

• height – Optional height for the label. Defaults to 1 line.

• align – Optional alignment for the Label. Defaults to left aligned. Options are “<” = left,
“>” = right and “^” = centre

84 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• name – The name of this widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

8.1. asciimatics package 85

asciimatics Documentation, Release 1.13.1

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

text
The current text for this Label.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this Label.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.layout module

This module implements the displaying of widgets appropriately

class asciimatics.widgets.layout.Layout(columns, fill_frame=False)
Bases: object

Widget layout handler.

All Widgets must be contained within a Layout within a Frame.The Layout class is responsible for deciding the
exact size and location of the widgets. The logic uses similar ideas as used in modern web frameworks and is as
follows.

1. The Frame owns one or more Layouts. The Layouts stack one above each other when displayed - i.e. the
first Layout in the Frame is above the second, etc.

2. Each Layout defines the horizontal constraints by defining columns as a percentage of the full canvas
width.

86 Chapter 8. asciimatics

https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

3. The Widgets are assigned a column within the Layout that owns them.

4. The Layout then decides the exact size and location to make the Widget best fit the canvas as constrained
by the above.

Parameters

• columns – A list of numbers specifying the width of each column in this layout.

• fill_frame – Whether this Layout should attempt to fill the rest of the Frame. Defaults
to False.

The Layout will automatically normalize the units used for the columns, e.g. converting [2, 6, 2] to [20%, 60%,
20%] of the available canvas.

add_widget(widget, column=0)
Add a widget to this Layout.

If you are adding this Widget to the Layout dynamically after starting to play the Scene, don’t forget to
ensure that the value is explicitly set before the next update.

Parameters

• widget – The widget to be added.

• column – The column within the widget for this widget. Defaults to zero.

Returns The passed in widget (so you can store a reference if needed).

blur()
Call this to take the input focus from this Layout.

clear_widgets()
Clear all widgets from this Layout.

This method allows users of the Layout to dynamically recreate a new Layout. After calling this method,
you can add new widgetsback into the Layout and then need to call fix to force the Frame to recalculate
the resulting new overall layout.

disable(columns=None)
Disable all widgets in the specified columns of this Layout.

Parameters columns – The list of columns to disable. Defaults to all columns.

enable(columns=None)
Enable all widgets in the specified columns of this Layout.

Parameters columns – The list of columns to enable. Defaults to all columns.

fill_frame
Whether this Layout is variable height or not.

find_widget(name)
Look for a widget with a specified name.

Parameters name – The name to search for.

Returns The widget that matches or None if one couldn’t be found.

fix(start_x, start_y, max_width, max_height)
Fix the location and size of all the Widgets in this Layout.

Parameters

• start_x – The start column for the Layout.

8.1. asciimatics package 87

asciimatics Documentation, Release 1.13.1

• start_y – The start line for the Layout.

• max_width – Max width to allow this layout.

• max_height – Max height to allow this layout.

Returns The next line to be used for any further Layouts.

focus(force_first=False, force_last=False, force_column=None, force_widget=None)
Call this to give this Layout the input focus.

Parameters

• force_first – Optional parameter to force focus to first widget.

• force_last – Optional parameter to force focus to last widget.

• force_column – Optional parameter to mandate the new column index.

• force_widget – Optional parameter to mandate the new widget index.

The force_column and force_widget parameters must both be set together or they will otherwise be ig-
nored.

Raises IndexError – if a force option specifies a bad column or widget, or if the whole
Layout is readonly.

frame_update_count
The number of frames before this Layout should be updated.

get_current_widget()
Return the current widget with the focus, or None if there isn’t one.

get_nearest_widget(target_widget, direction)
Find the nearest enabled widget to the specified target widget, bearing in mind direction of travel.

Direction of travel is defined to be the movement from current Layout to next. This is important for the
case where we wrap back to the beginning or end of the Layouts - and so should still only look for the
widgets nearest the top/bottom (depending on direction of travel).

This function may return None if there is no match (e.g. all widgets are disabled).

Parameters

• target_widget – the target widget to match.

• direction – The direction of travel across Layouts.

process_event(event, hover_focus)
Process any input event.

Parameters

• event – The event that was triggered.

• hover_focus – Whether to trigger focus change on mouse moves.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

reset()
Reset this Layout and the Widgets it contains.

88 Chapter 8. asciimatics

https://docs.python.org/3/library/exceptions.html#IndexError

asciimatics Documentation, Release 1.13.1

save(validate)
Save the current values in all the widgets back to the persistent data storage.

Parameters validate – whether to validate the saved data or not.

Raises InvalidFields if any invalid data is found.

update(frame_no)
Redraw the widgets inside this Layout.

Parameters frame_no – The current frame to be drawn.

update_widgets(new_frame=None)
Reset the values for any Widgets in this Layout based on the current Frame data store.

Parameters new_frame – optional old Frame - used when cloning scenes.

asciimatics.widgets.listbox module

This module implements the listbox widget

class asciimatics.widgets.listbox.ListBox(height, options, centre=False, label=None,
name=None, add_scroll_bar=False,
parser=None, on_change=None,
on_select=None, validator=None)

Bases: asciimatics.widgets.baselistbox._BaseListBox

A ListBox is a widget that displays a list from which the user can select one option.

Parameters

• height – The required number of input lines for this ListBox.

• options – The options for each row in the widget.

• centre – Whether to centre the selected line in the list.

• label – An optional label for the widget.

• name – The name for the ListBox.

• parser – Optional parser to colour text.

• on_change – Optional function to call when selection changes.

• on_select – Optional function to call when the user actually selects an entry from

• validator – Optional function to validate selection for this widget.

The options are a list of tuples, where the first value is the string to be displayed to the user and the second is an
interval value to identify the entry to the program. For example:

options=[(“First option”, 1), (“Second option”, 2)]

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

8.1. asciimatics package 89

asciimatics Documentation, Release 1.13.1

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

options
The list of options available for user selection

This is a list of tuples (<human readable string>, <internal value>).

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

90 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

start_line
The line that will be drawn at the top of the visible section of this list.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this list box.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.multicolumnlistbox module

This module implements the widget for a multiple column list box

class asciimatics.widgets.multicolumnlistbox.MultiColumnListBox(height,
columns,
options, ti-
tles=None,
label=None,
name=None,
add_scroll_bar=False,
parser=None,
on_change=None,
on_select=None,
space_delimiter=’
’)

Bases: asciimatics.widgets.baselistbox._BaseListBox

A MultiColumnListBox is a widget for displaying tabular data.

It displays a list of related data in columns, from which the user can select a line.

Parameters

• height – The required number of input lines for this ListBox.

8.1. asciimatics package 91

asciimatics Documentation, Release 1.13.1

• columns – A list of widths and alignments for each column.

• options – The options for each row in the widget.

• titles – Optional list of titles for each column. Must match the length of columns.

• label – An optional label for the widget.

• name – The name for the ListBox.

• add_scroll_bar – Whether to add optional scrollbar for large lists.

• parser – Optional parser to colour text.

• on_change – Optional function to call when selection changes.

• on_select – Optional function to call when the user actually selects an entry from

• space_delimiter – Optional parameter to define the delimiter between columns. The
default value is blank space.

The columns parameter is a list of integers or strings. If it is an integer, this is the absolute width of the column
in characters. If it is a string, it must be of the format “[<align>]<width>[%]” where:

• <align> is the alignment string (“<” = left, “>” = right, “^” = centre)

• <width> is the width in characters

• % is an optional qualifier that says the number is a percentage of the width of the widget.

Column widths need to encompass any space required between columns, so for example, if your column is 5
characters, allow 6 for an extra space at the end. It is not possible to do this when you have a right-justified
column next to a left-justified column, so this widget will automatically space them for you.

An integer value of 0 is interpreted to be use whatever space is left available after the rest of the columns have
been calculated. There must be only one of these columns.

The number of columns is for this widget is determined from the number of entries in the columns parameter.
The options list is then a list of tuples of the form ([val1, val2, . . . , valn], index). For example, this data provides
2 rows for a 3 column widget:

options=[([“One”, “row”, “here”], 1), ([“Second”, “row”, “here”], 2)]

The options list may be None and then can be set later using the options property on this widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

92 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

options
The list of options available for user selection

This is a list of tuples ([<col 1 string>, . . . , <col n string>], <internal value>).

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

8.1. asciimatics package 93

asciimatics Documentation, Release 1.13.1

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

start_line
The line that will be drawn at the top of the visible section of this list.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this list box.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.popupdialog module

This module implements a Pop up dialog message box

class asciimatics.widgets.popupdialog.PopUpDialog(screen, text, but-
tons, on_close=None,
has_shadow=False,
theme=’warning’)

Bases: asciimatics.widgets.frame.Frame

A fixed implementation Frame that provides a standard message box dialog.

Parameters

• screen – The Screen that owns this dialog.

• text – The message text to display.

• buttons – A list of button names to display. This may be an empty list.

• on_close – Optional function to invoke on exit.

• has_shadow – optional flag to specify if dialog should have a shadow when drawn.

• theme – optional colour theme for this pop-up. Defaults to the warning colours.

The on_close method (if specified) will be called with one integer parameter that corresponds to the index of the
button passed in the array of available buttons.

Note that on_close must be a static method to work across screen resizing. Either it is static (and so the dialog
will be cloned) or it is not (and the dialog will disappear when the screen is resized).

add_effect(effect)
Add an Effect to the Frame.

Parameters effect – The Effect to be added.

94 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

add_layout(layout)
Add a Layout to the Frame.

Parameters layout – The Layout to be added.

border_box
Instance of BoxTool that specifies the characters used to draw the border to this frame. You can change
the border character style by modifying the style property on this object. Allowed styles are defined in
constants.

canvas
The Canvas that backs this Frame.

clone(screen, scene)
Create a clone of this Dialog into a new Screen.

Parameters

• screen – The new Screen object to clone into.

• scene – The new Scene object to clone into.

data
Data dictionary containing values from the contained widgets.

delete_count
The number of frames before this Effect should be deleted.

find_widget(name)
Look for a widget with a specified name.

Parameters name – The name to search for.

Returns The widget that matches or None if one couldn’t be found.

fix()
Fix the layouts and calculate the locations of all the widgets.

This function should be called once all Layouts have been added to the Frame and all widgets added to the
Layouts.

focussed_widget
The widget that currently has the focus within this Frame.

frame_update_count
The number of frames before this Effect should be updated.

get_scroll_pos()
Get current position for scroll bar.

move_to(x, y, h)
Make the specified location visible. This is typically used by a widget to scroll the canvas such that it is
visible.

Parameters

• x – The x location to make visible.

• y – The y location to make visible.

• h – The height of the location to make visible.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

8.1. asciimatics package 95

asciimatics Documentation, Release 1.13.1

Returns None if the Effect processed the event, else the original event.

rebase_event(event)
Rebase the coordinates of the passed event to frame-relative coordinates.

Parameters event – The event to be rebased.

Returns A new event object appropriately re-based.

reduce_cpu
Whether this Frame should try to optimize refreshes to reduce CPU.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

save(validate=False)
Save the current values in all the widgets back to the persistent data storage.

Parameters validate – Whether to validate the data before saving.

Calling this while setting the data field (e.g. in a widget callback) will have no effect.

When validating data, it can throw an Exception for any

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

set_scroll_pos(pos)
Set current position for scroll bar.

set_theme(theme)
Pick a palette from the list of supported THEMES.

Parameters theme – The name of the theme to set.

stop_frame
Last frame for this effect. A value of zero means no specific end.

switch_focus(layout, column, widget)
Switch focus to the specified widget.

Parameters

• layout – The layout that owns the widget.

• column – The column the widget is in.

• widget – The index of the widget to take the focus.

title
Title for this Frame.

96 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

asciimatics.widgets.popupmenu module

This module implements a pop up menu widget

class asciimatics.widgets.popupmenu.PopupMenu(screen, menu_items, x, y)
Bases: asciimatics.widgets.frame.Frame

A widget for displaying a menu.

Parameters

• screen – The Screen being used for this pop-up.

• menu_items – a list of items to be displayed in the menu.

• x – The X coordinate for the desired pop-up.

• y – The Y coordinate for the desired pop-up.

The menu_items parameter is a list of 2-tuples, which define the text to be displayed in the menu and the function
to call when that menu item is clicked. For example:

menu_items = [(“Open”, file_open), (“Save”, file_save), (“Close”, file_close)]

add_effect(effect)
Add an Effect to the Frame.

Parameters effect – The Effect to be added.

add_layout(layout)
Add a Layout to the Frame.

Parameters layout – The Layout to be added.

border_box
Instance of BoxTool that specifies the characters used to draw the border to this frame. You can change
the border character style by modifying the style property on this object. Allowed styles are defined in
constants.

canvas
The Canvas that backs this Frame.

clone(_, scene)
Create a clone of this Frame into a new Screen.

Parameters

• _ – ignored.

• scene – The new Scene object to clone into.

data
Data dictionary containing values from the contained widgets.

delete_count
The number of frames before this Effect should be deleted.

find_widget(name)
Look for a widget with a specified name.

8.1. asciimatics package 97

asciimatics Documentation, Release 1.13.1

Parameters name – The name to search for.

Returns The widget that matches or None if one couldn’t be found.

fix()
Fix the layouts and calculate the locations of all the widgets.

This function should be called once all Layouts have been added to the Frame and all widgets added to the
Layouts.

focussed_widget
The widget that currently has the focus within this Frame.

frame_update_count
The number of frames before this Effect should be updated.

get_scroll_pos()
Get current position for scroll bar.

move_to(x, y, h)
Make the specified location visible. This is typically used by a widget to scroll the canvas such that it is
visible.

Parameters

• x – The x location to make visible.

• y – The y location to make visible.

• h – The height of the location to make visible.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

rebase_event(event)
Rebase the coordinates of the passed event to frame-relative coordinates.

Parameters event – The event to be rebased.

Returns A new event object appropriately re-based.

reduce_cpu
Whether this Frame should try to optimize refreshes to reduce CPU.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

save(validate=False)
Save the current values in all the widgets back to the persistent data storage.

Parameters validate – Whether to validate the data before saving.

98 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

Calling this while setting the data field (e.g. in a widget callback) will have no effect.

When validating data, it can throw an Exception for any

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

set_scroll_pos(pos)
Set current position for scroll bar.

set_theme(theme)
Pick a palette from the list of supported THEMES.

Parameters theme – The name of the theme to set.

stop_frame
Last frame for this effect. A value of zero means no specific end.

switch_focus(layout, column, widget)
Switch focus to the specified widget.

Parameters

• layout – The layout that owns the widget.

• column – The column the widget is in.

• widget – The index of the widget to take the focus.

title
Title for this Frame.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

asciimatics.widgets.radiobuttons module

This module implements the widget for radio buttons

class asciimatics.widgets.radiobuttons.RadioButtons(options, label=None,
name=None, on_change=None,
**kwargs)

Bases: asciimatics.widgets.widget.Widget

A RadioButtons widget is used to ask for one of a list of values to be selected by the user.

It consists of an optional label and then a list of selection bullets with field names.

Parameters

• options – A list of (text, value) tuples for each radio button.

• label – An optional label for the widget.

• name – The internal name for the widget.

• on_change – Optional function to call when text changes.

Also see the common keyword arguments in Widget.

8.1. asciimatics package 99

asciimatics Documentation, Release 1.13.1

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

100 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for these RadioButtons.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.scrollbar module

This module implements a scroll bar capability for widgets

asciimatics.widgets.temppopup module

This module implements a base class for popups

asciimatics.widgets.text module

This widget implements a text based input field

class asciimatics.widgets.text.Text(label=None, name=None, on_change=None, valida-
tor=None, hide_char=None, max_length=None, read-
only=False, **kwargs)

Bases: asciimatics.widgets.widget.Widget

A Text widget is a single line input field.

8.1. asciimatics package 101

asciimatics Documentation, Release 1.13.1

It consists of an optional label and an entry box.

Parameters

• label – An optional label for the widget.

• name – The name for the widget.

• on_change – Optional function to call when text changes.

• validator – Optional definition of valid data for this widget. This can be a function
(which takes the current value and returns True for valid content) or a regex string (which
must match the entire allowed value).

• hide_char – Character to use instead of what the user types - e.g. to hide passwords.

• max_length – Optional maximum length of the field. If set, the widget will limit data
entry to this length.

• readonly – Whether the widget prevents user input to change values. Default is False.

Also see the common keyword arguments in Widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

102 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

readonly
Whether this widget is readonly or not.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this Text.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

8.1. asciimatics package 103

asciimatics Documentation, Release 1.13.1

asciimatics.widgets.textbox module

This module implements a multi line editing text box

class asciimatics.widgets.textbox.TextBox(height, label=None, name=None,
as_string=False, line_wrap=False,
parser=None, on_change=None, read-
only=False, **kwargs)

Bases: asciimatics.widgets.widget.Widget

A TextBox is a widget for multi-line text editing.

It consists of a framed box with option label.

Parameters

• height – The required number of input lines for this TextBox.

• label – An optional label for the widget.

• name – The name for the TextBox.

• as_string – Use string with newline separator instead of a list for the value of this widget.

• line_wrap – Whether to wrap at the end of the line.

• parser – Optional parser to colour text.

• on_change – Optional function to call when text changes.

• readonly – Whether the widget prevents user input to change values. Default is False.

Also see the common keyword arguments in Widget.

auto_scroll
When set to True the TextBox will scroll to the bottom when created or next text is added. When set to
False, the current scroll position will remain even if the contents are changed.

Defaults to True.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

104 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

hide_cursor
Set to True to stop the cursor from showing. Defaults to False.

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

readonly
Whether this widget is readonly or not.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

8.1. asciimatics package 105

asciimatics Documentation, Release 1.13.1

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this TextBox.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.timepicker module

This module implements a time picker widget

class asciimatics.widgets.timepicker.TimePicker(label=None, name=None, sec-
onds=False, on_change=None,
**kwargs)

Bases: asciimatics.widgets.widget.Widget

A TimePicker widget allows you to pick a time from a compact, temporary, pop-up Frame.

Parameters

• label – An optional label for the widget.

• name – The name for the widget.

• seconds – Whether to include selection of seconds or not.

• on_change – Optional function to call when the selected time changes.

Also see the common keyword arguments in Widget.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

106 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

8.1. asciimatics package 107

asciimatics Documentation, Release 1.13.1

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current selected time.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.utilities module

This module defines commonly used pieces for widgets

asciimatics.widgets.utilities.THEMES = {'bright': {'control': (3, 1, 0), 'disabled': (0, 1, 0), 'focus_button': (3, 1, 0), 'focus_control': (3, 1, 0), 'focus_edit_text': (3, 1, 0), 'invalid': (0, 2, 1), 'label': (2, 1, 0), 'selected_focus_control': (3, 1, 0), 'selected_focus_field': (3, 1, 0)}, 'default': {'background': (7, 2, 4), 'borders': (0, 1, 4), 'button': (7, 2, 4), 'control': (3, 2, 4), 'disabled': (0, 1, 4), 'edit_text': (7, 2, 4), 'field': (7, 2, 4), 'focus_button': (7, 1, 6), 'focus_control': (3, 2, 4), 'focus_edit_text': (7, 1, 6), 'focus_field': (7, 2, 4), 'focus_readonly': (0, 1, 6), 'invalid': (3, 1, 1), 'label': (2, 1, 4), 'readonly': (0, 1, 4), 'scroll': (6, 2, 4), 'selected_control': (3, 1, 4), 'selected_field': (3, 1, 4), 'selected_focus_control': (3, 1, 6), 'selected_focus_field': (7, 1, 6), 'shadow': (0, None, 0), 'title': (7, 1, 4)}, 'green': {'disabled': (0, 1, 0), 'focus_button': (2, 1, 0), 'focus_edit_text': (2, 1, 0), 'invalid': (0, 2, 1), 'label': (2, 1, 0), 'selected_focus_control': (2, 1, 0), 'selected_focus_field': (2, 1, 0), 'title': (2, 1, 0)}, 'monochrome': {'disabled': (0, 1, 0), 'focus_button': (7, 1, 0), 'focus_edit_text': (7, 1, 0), 'invalid': (0, 2, 1), 'label': (7, 1, 0), 'selected_focus_control': (7, 1, 0), 'selected_focus_field': (7, 1, 0), 'title': (7, 1, 0)}, 'tlj256': {'disabled': (8, 0, 15), 'focus_button': (15, 0, 88), 'focus_edit_text': (15, 0, 88), 'invalid': (0, 0, 196), 'label': (88, 0, 15), 'selected_focus_control': (15, 0, 88), 'selected_focus_field': (15, 0, 88), 'title': (88, 0, 15)}, 'warning': {'disabled': (7, 1, 1), 'focus_button': (7, 1, 3), 'focus_control': (7, 1, 1), 'focus_edit_text': (7, 1, 1), 'focus_field': (7, 1, 1), 'label': (7, 1, 1), 'shadow': (0, None, 0), 'title': (7, 1, 1)}}
Standard palettes for use with set_theme(). Each entry in THEMES contains a colour palette for use by the
widgets within a Frame. Each colour palette is a dictionary mapping a colour key to a 3-tuple of (foreground
colour, attribute, background colour). The “default” theme defines all the required keys for a palette.

asciimatics.widgets.verticaldivider module

This module implements a vertical division between widgets

class asciimatics.widgets.verticaldivider.VerticalDivider(height=-135792467)
Bases: asciimatics.widgets.widget.Widget

A vertical divider for separating columns.

This widget should be put into a column of its own in the Layout.

Parameters height – The required height for this divider.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

108 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

8.1. asciimatics package 109

asciimatics Documentation, Release 1.13.1

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The current value for this VerticalDivider.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

asciimatics.widgets.widget module

This module allows you to create interactive text user interfaces. For more details see http://asciimatics.readthedocs.
io/en/latest/widgets.html

class asciimatics.widgets.widget.Widget(name, tab_stop=True, disabled=False,
on_focus=None, on_blur=None)

Bases: object

A Widget is a re-usable component that can be used to create a simple GUI.

Parameters

• name – The name of this Widget.

• tab_stop – Whether this widget should take focus or not when tabbing around the Frame.

• disabled – Whether this Widget should be disabled or not.

• on_focus – Optional callback whenever this widget gets the focus.

• on_blur – Optional callback whenever this widget loses the focus.

FILL_COLUMN = -135792467
Widgets with this constant for the required height will be re-sized to fit the maximum space used by any
other column in the Layout.

FILL_FRAME = -135792468
Widgets with this constant for the required height will be re-sized to fit the available vertical space in the
Layout.

blur()
Call this to take the input focus from this Widget.

custom_colour
A custom colour to use instead of the normal calculated one when drawing this widget.

This must be a key name from the palette dictionary.

disabled
Whether this widget is disabled or not.

focus()
Call this to give this Widget the input focus.

110 Chapter 8. asciimatics

http://asciimatics.readthedocs.io/en/latest/widgets.html
http://asciimatics.readthedocs.io/en/latest/widgets.html
https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

frame
The Frame that contains this Widget.

frame_update_count
The number of frames before this Widget should be updated.

get_location()
Return the absolute location of this widget on the Screen, taking into account the current state of the Frame
that is displaying it and any label offsets of the Widget.

Returns A tuple of the form (<X coordinate>, <Y coordinate>).

is_mouse_over(event, include_label=True, width_modifier=0)
Check if the specified mouse event is over this widget.

Parameters

• event – The MouseEvent to check.

• include_label – Include space reserved for the label when checking.

• width_modifier – Adjustment to width (e.g. for scroll bars).

Returns True if the mouse is over the active parts of the widget.

is_tab_stop
Whether this widget is a valid tab stop for keyboard navigation.

is_valid
Whether this widget has passed its data validation or not.

is_visible
Whether this widget is visible on the Canvas or not.

label
The label for this widget. Can be None.

name
The name for this widget (for reference in the persistent data). Can be None.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_frame(frame)
Register the Frame that owns this Widget.

Parameters frame – The owning Frame.

required_height(offset, width)
Calculate the minimum required height for this widget.

Parameters

• offset – The allowed width for any labels.

• width – The total width of the widget, including labels.

reset()
The reset method is called whenever the widget needs to go back to its default (initially created) state.

8.1. asciimatics package 111

asciimatics Documentation, Release 1.13.1

set_layout(x, y, offset, w, h)
Set the size and position of the Widget.

This should not be called directly. It is used by the Layout class to arrange all widgets within the Frame.

Parameters

• x – The x position of the widget.

• y – The y position of the widget.

• offset – The allowed label size for the widget.

• w – The width of the widget.

• h – The height of the widget.

update(frame_no)
The update method is called whenever this widget needs to redraw itself.

Parameters frame_no – The frame number for this screen update.

value
The value to return for this widget based on the user’s input.

width
The width of this Widget (excluding any labels).

Only valid after the Frame has been fixed in place.

Module contents

This is the module initialization for widgets

8.1.2 Submodules

8.1.3 asciimatics.constants module

This module is just a collection of simple helper functions.

asciimatics.constants.COLOUR_REGEX = '^\\$\\{((\\d+),(\\d+),(\\d+)|(\\d+),(\\d+)|(\\d+))\\}(.*)'
Regex for asciimatics ${c,a,b} embedded colour attributes.

asciimatics.constants.MAPPING_ATTRIBUTES = {'1': 1, '2': 2, '3': 3, '4': 4}
Attribute conversion table for the ${c,a} form of attributes for paint.

8.1.4 asciimatics.effects module

This module defines Effects which can be used for animations. For more details see http://asciimatics.readthedocs.io/
en/latest/animation.html

class asciimatics.effects.Background(screen, bg=0, **kwargs)
Bases: asciimatics.effects.Effect

Effect to be used as a Desktop background. This sets the background to the specified colour.

Parameters

• screen – The Screen being used for the Scene.

112 Chapter 8. asciimatics

http://asciimatics.readthedocs.io/en/latest/animation.html
http://asciimatics.readthedocs.io/en/latest/animation.html

asciimatics Documentation, Release 1.13.1

• bg – Optional colour for the background.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.BannerText(screen, renderer, y, colour, bg=0, **kwargs)
Bases: asciimatics.effects.Effect

Special effect to scroll some text (from a Renderer) horizontally like a banner.

Parameters

• screen – The Screen being used for the Scene.

• renderer – The renderer to be scrolled

• y – The line (y coordinate) for the start of the text.

• colour – The default foreground colour to use for the text.

• bg – The default background colour to use for the text.

8.1. asciimatics package 113

asciimatics Documentation, Release 1.13.1

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Clock(screen, x, y, r, bg=0, **kwargs)
Bases: asciimatics.effects.Effect

An ASCII ticking clock (telling the correct local time).

Parameters

• screen – The Screen being used for the Scene.

• x – X coordinate for the centre of the clock.

• y – Y coordinate for the centre of the clock.

• r – Radius of the clock.

• bg – Background colour for the clock.

Also see the common keyword arguments in Effect.

114 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Cog(screen, x, y, radius, direction=1, colour=7, **kwargs)
Bases: asciimatics.effects.Effect

A rotating cog.

Parameters

• screen – The Screen being used for the Scene.

• x – X coordinate of the centre of the cog.

• y – Y coordinate of the centre of the cog.

• radius – The radius of the cog.

• direction – The direction of rotation. Positive numbers are anti-clockwise, negative
numbers clockwise.

• colour – The colour of the cog.

8.1. asciimatics package 115

asciimatics Documentation, Release 1.13.1

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Cycle(screen, renderer, y, **kwargs)
Bases: asciimatics.effects.Effect

Special effect to cycle the colours on some specified text from a Renderer. The text is automatically centred to
the width of the Screen. This effect is not compatible with multi-colour rendered text.

Parameters

• screen – The Screen being used for the Scene.

• renderer – The Renderer which is to be cycled.

• y – The line (y coordinate) for the start of the text.

Also see the common keyword arguments in Effect.

116 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Effect(screen, start_frame=0, stop_frame=0, delete_count=None)
Bases: object

Abstract class to handle a special effect on the screen. An Effect can cover anything from a static image at the
start of the Scene through to dynamic animations that need to be redrawn for every frame.

The basic interaction with a Scene is as follows:

1. The Scene will register with the Effect when it as added using register_scene().

2. The Scene will call Effect.reset() for all Effects when it starts.

3. The Scene will determine the number of frames required (either through explicit configuration or querying
stop_frame for every Effect).

4. It will then run the scene, calling Effect.update() for each effect that is in the scene. The base Effect
will then call the abstract method _update() if the effect should be visible.

8.1. asciimatics package 117

https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

5. If any keys are pressed or the mouse moved/clicked, the scene will call Effect.process_event()
for each event, allowing the effect to act on it if needed.

New Effects, therefore need to implement the abstract methods on this class to satisfy the contract with Scene.
Since most effects don’t require user interaction, the default process_event() implementation will ignore the
event (and so effects don’t need to implement this method unless needed).

Parameters

• screen – The Screen that will render this Effect.

• start_frame – Start index for the effect.

• stop_frame – Stop index for the effect.

• delete_count – Number of frames before this effect is deleted.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

118 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

class asciimatics.effects.Julia(screen, c=None, **kwargs)
Bases: asciimatics.effects.Effect

Julia Set generator. See http://en.wikipedia.org/wiki/Julia_set for more information on this fractal.

Parameters

• screen – The Screen being used for the Scene.

• c – The starting value of ‘c’ for the Julia Set.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Matrix(screen, **kwargs)
Bases: asciimatics.effects.Effect

Matrix-like falling green letters.

Parameters screen – The Screen being used for the Scene.

8.1. asciimatics package 119

http://en.wikipedia.org/wiki/Julia_set

asciimatics Documentation, Release 1.13.1

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Mirage(screen, renderer, y, colour, **kwargs)
Bases: asciimatics.effects.Effect

Special effect to make bits of the specified text appear over time. This text is automatically centred on the screen.

Parameters

• screen – The Screen being used for the Scene.

• renderer – The renderer to be displayed.

• y – The line (y coordinate) for the start of the text.

• colour – The colour attribute to use for the text.

Also see the common keyword arguments in Effect.

120 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Print(screen, renderer, y, x=None, colour=7, attr=0, bg=0,
clear=False, transparent=True, speed=4, **kwargs)

Bases: asciimatics.effects.Effect

Special effect that simply prints the specified text (from a Renderer) at the required location.

Parameters

• screen – The Screen being used for the Scene.

• renderer – The renderer to be printed.

• x – The column (x coordinate) for the start of the text. If not specified, defaults to centring
the text on screen.

• y – The line (y coordinate) for the start of the text.

• colour – The foreground colour to use for the text.

• attr – The colour attribute to use for the text.

8.1. asciimatics package 121

asciimatics Documentation, Release 1.13.1

• bg – The background colour to use for the text.

• clear – Whether to clear the text before stopping.

• transparent – Whether to print spaces (and so be able to overlay other Effects). If False,
this will redraw all characters and so replace any Effect underneath it.

• speed – The refresh rate in frames between refreshes.

Note that a speed of 1 will force the Screen to redraw the Effect every frame update, while a value of 0 will
redraw on demand - i.e. will redraw every time that an update is required by another Effect.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.RandomNoise(screen, signal=None, jitter=6, **kwargs)
Bases: asciimatics.effects.Effect

White noise effect - like an old analogue TV set that isn’t quite tuned right. If desired, a signal image (from a
renderer) can be specified that will appear from the noise.

122 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

Parameters

• screen – The Screen being used for the Scene.

• signal – The renderer to use as the ‘signal’ in the white noise.

• jitter – The amount that the signal will jump when there is noise.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Scroll(screen, rate, **kwargs)
Bases: asciimatics.effects.Effect

Special effect to scroll the screen up at a required rate. Since the Screen has a limited size and will not wrap,
ensure that it is large enough to Scroll for the desired time.

Parameters

• screen – The Screen being used for the Scene.

8.1. asciimatics package 123

asciimatics Documentation, Release 1.13.1

• rate – How many frames to wait between scrolling the screen.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Snow(screen, **kwargs)
Bases: asciimatics.effects.Effect

Settling snow effect.

Parameters screen – The Screen being used for the Scene.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

124 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Sprite(screen, renderer_dict, path, colour=7, clear=True,
**kwargs)

Bases: asciimatics.effects.Effect

An animated character capable of following a path around the screen.

Parameters

• screen – The Screen being used for the Scene.

• renderer_dict – A dictionary of Renderers to use for displaying the Sprite.

• path – The Path for the Sprite to follow.

• colour – The colour to use to render the Sprite.

• clear – Whether to clear out old images or leave a trail.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

8.1. asciimatics package 125

asciimatics Documentation, Release 1.13.1

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

last_position()
Returns the last position of this Sprite as a tuple (x, y, width, height).

overlaps(other, use_new_pos=False)
Check whether this Sprite overlaps another.

Parameters

• other – The other Sprite to check for an overlap.

• use_new_pos – Whether to use latest position (due to recent update). Defaults to False.

Returns True if the two Sprites overlap.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Stars(screen, count, pattern=’..+.. ...x... ...*... ’, **kwargs)
Bases: asciimatics.effects.Effect

Add random stars to the screen and make them twinkle.

Parameters

• screen – The Screen being used for the Scene.

• count – The number of starts to create.

• pattern – The string pattern for the stars to loop through

126 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.effects.Wipe(screen, bg=0, **kwargs)
Bases: asciimatics.effects.Effect

Wipe the screen down from top to bottom.

Parameters

• screen – The Screen being used for the Scene.

• bg – Optional background colour to use for the wipe.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

8.1. asciimatics package 127

asciimatics Documentation, Release 1.13.1

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

asciimatics.effects.random()→ x in the interval [0, 1).

8.1.5 asciimatics.event module

This module defines basic input events. For more details, see http://asciimatics.readthedocs.io/en/latest/.html

class asciimatics.event.Event
Bases: object

A class to hold information about an input event.

The exact contents varies from event to event. See specific classes for more information.

class asciimatics.event.KeyboardEvent(key_code)
Bases: asciimatics.event.Event

An event that represents a key press.

Its key field is the key_code. This is the ordinal representation of the key (taking into account keyboard state -
e.g. caps lock) if possible, or an extended key code (the KEY_xxx constants in the Screen class) where not.

128 Chapter 8. asciimatics

http://asciimatics.readthedocs.io/en/latest/.html
https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

Parameters key_code – the ordinal value of the key that was pressed.

class asciimatics.event.MouseEvent(x, y, buttons)
Bases: asciimatics.event.Event

An event that represents a mouse move or click.

Allowed values for the buttons are any bitwise combination of LEFT_CLICK, RIGHT_CLICK and DOU-
BLE_CLICK.

Parameters

• x – The X coordinate of the mouse event.

• y – The Y coordinate of the mouse event.

• buttons – A bitwise flag for any mouse buttons that were pressed (if any).

8.1.6 asciimatics.exceptions module

This module defines the exceptions used by asciimatics.

exception asciimatics.exceptions.Highlander
Bases: Exception

There can be only one Layout or Widget with certain options set (designed to fill the rest of the screen). If you
hit this exception you have a bug in your application.

If you don’t get the name, take a look at this link.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception asciimatics.exceptions.InvalidFields(fields)
Bases: Exception

When saving data from a Frame, you can ask the Frame to validate the data before saving. This is the exception
that gets thrwn if any invalid datd is found.

Parameters fields – The list of the fields that are invalid.

fields
The list of fields that are invalid.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception asciimatics.exceptions.NextScene(name=None)
Bases: Exception

Any component can raise this exception to tell Asciimatics to move to the next Scene being played. Only
effective inside Screen.play().

Parameters name – Next Scene to invoke. Defaults to next in the list.

name
The name of the next Scene to invoke.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception asciimatics.exceptions.ResizeScreenError(message, scene=None)
Bases: Exception

8.1. asciimatics package 129

https://docs.python.org/3/library/exceptions.html#Exception
https://en.wikipedia.org/wiki/Highlander_(film)
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

asciimatics Documentation, Release 1.13.1

Asciimatics raises this Exception if the terminal is resized while playing a Scene (and the Screen has been told
not to ignore a resizing event).

Parameters

• message – Error message for this exception.

• scene – Scene that was active at time of resize.

scene
The Scene that was running when the Screen resized.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception asciimatics.exceptions.StopApplication(message)
Bases: Exception

Any component can raise this exception to tell Asciimatics to stop running. If playing a Scene (i.e. inside
Screen.play()) the Screen will return to the calling function. When used at any other time, the exception will
need to be caught by the application using Asciimatics.

Parameters message – Error message for this exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

8.1.7 asciimatics.parsers module

This module provides parsers to create ColouredText objects from embedded control strings.

class asciimatics.parsers.AnsiTerminalParser
Bases: asciimatics.parsers.Parser

Parser to handle ANSI terminal escape codes.

Initialize the parser.

append(text)
Append more text to the current text being processed.

Parameters text – raw text to process.

parse()
Generator to return coloured text from raw text.

Generally returns a stream of text/color tuple/offset tuples. If there is a colour update with no visible text,
the first element of the tuple may be None.

Returns a 3-tuple of (start offset in raw text, command to execute, parameters)

reset(text, colours)
Reset the parser to analyze the supplied raw text.

Parameters

• text – raw text to process.

• colours – colour tuple to initialise the colour map.

class asciimatics.parsers.AsciimaticsParser
Bases: asciimatics.parsers.Parser

Parser to handle Asciimatics rendering escape strings.

130 Chapter 8. asciimatics

https://docs.python.org/3/library/exceptions.html#Exception

asciimatics Documentation, Release 1.13.1

Initialize the parser.

append(text)
Append more text to the current text being processed.

Parameters text – raw text to process.

parse()
Generator to return coloured text from raw text.

Returns a 3-tuple of (start offset in raw text, command to execute, parameters)

reset(text, colours)
Reset the parser to analyze the supplied raw text.

Parameters

• text – raw text to process.

• colours – colour tuple to initialise the colour map.

class asciimatics.parsers.ControlCodeParser
Bases: asciimatics.parsers.Parser

Parser to replace all control codes with a readable version - e.g. “^M” for carriage return.

Initialize the parser.

append(text)
Append more text to the current text being processed.

Parameters text – raw text to process.

parse()
Generator to return coloured text from raw text.

Returns a 3-tuple of (start offset in raw text, command to execute, parameters)

reset(text, colours)
Reset the parser to analyze the supplied raw text.

Parameters

• text – raw text to process.

• colours – colour tuple to initialise the colour map.

class asciimatics.parsers.Parser
Bases: object

Abstract class to represent text parsers that extract colour control codes from raw text and convert them to
displayable text and associated colour maps.

Initialize the parser.

CHANGE_COLOURS = 1
Command to change active colour tuple. Parameters are the 3-tuple of (fg, attr, bg)

CLEAR_SCREEN = 8
Clear the screen. No parameters.

DELETE_CHARS = 5
Command to delete next N characters from this line.

DELETE_LINE = 4
Command to delete part of the current line. Params are 0, 1 and 2 for end, start, all.

8.1. asciimatics package 131

https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

DISPLAY_TEXT = 0
Command to display some text. Parameter is the text to display

MOVE_ABSOLUTE = 2
Command to move cursor to abs position. Parameters are (x, y) where each are absolute positions.

MOVE_RELATIVE = 3
Command to move cursor to relative position. Parameters are (x, y) where each are relative positions.

NEXT_TAB = 6
Next tab stop

RESTORE_CURSOR = 10
Restore the cursor position. No parameters.

SAVE_CURSOR = 9
Save the cursor position. No parameters.

SHOW_CURSOR = 7
Set cursor visibility. Param is boolean setting True=visible

append(text)
Append more text to the current text being processed.

Parameters text – raw text to process.

parse()
Generator to return coloured text from raw text.

Generally returns a stream of text/color tuple/offset tuples. If there is a colour update with no visible text,
the first element of the tuple may be None.

Returns a 3-tuple of (start offset in raw text, command to execute, parameters)

reset(text, colours)
Reset the parser to analyze the supplied raw text.

Parameters

• text – raw text to process.

• colours – colour tuple to initialise the colour map.

8.1.8 asciimatics.particles module

This module implements a particle system for complex animcation effects. For more details, see http://asciimatics.
readthedocs.io/en/latest/animation.html

class asciimatics.particles.DropEmitter(screen, life_time)
Bases: asciimatics.particles.ParticleEmitter

Replicate the whole screen with Particles and then drop them a cell at a time.

Parameters

• screen – The Screen being used for this particle system.

• life_time – The life time of this particle system.

update()
The function to draw a new frame for the particle system.

132 Chapter 8. asciimatics

http://asciimatics.readthedocs.io/en/latest/animation.html
http://asciimatics.readthedocs.io/en/latest/animation.html

asciimatics Documentation, Release 1.13.1

class asciimatics.particles.DropScreen(screen, life_time, **kwargs)
Bases: asciimatics.particles.ParticleEffect

Drop all the text on the screen as if it was subject to gravity.

See ParticleEffect for details of the parameters.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.Explosion(screen, x, y, life_time, **kwargs)
Bases: asciimatics.particles.ParticleEffect

An explosion effect.

Parameters

• screen – The Screen being used for the Scene.

• x – The column (x coordinate) for the origin of the effect.

• y – The line (y coordinate) for the origin of the effect.

8.1. asciimatics package 133

asciimatics Documentation, Release 1.13.1

• life_time – The life time of the effect.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.ExplosionFlames(screen, x, y, life_time)
Bases: asciimatics.particles.ParticleEmitter

An explosion of flame and smoke.

Parameters

• screen – The Screen being used for this particle system.

• x – The column (x coordinate) for the origin of this explosion.

• y – The line (y coordinate) for the origin of this explosion.

• life_time – The life time of this explosion.

134 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.PalmExplosion(screen, x, y, life_time, on_each=None)
Bases: asciimatics.particles.ParticleEmitter

A classic firework explosion into a palm shape.

Parameters

• screen – The Screen being used for this particle system.

• x – The column (x coordinate) for the origin of this explosion.

• y – The line (y coordinate) for the origin of this explosion.

• life_time – The life time of this explosion.

• on_each – The function to call to spawn a trail.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.PalmFirework(screen, x, y, life_time, **kwargs)
Bases: asciimatics.particles.ParticleEffect

Classic palm shaped firework.

Parameters

• screen – The Screen being used for the Scene.

• x – The column (x coordinate) for the origin of the effect.

• y – The line (y coordinate) for the origin of the effect.

• life_time – The life time of the effect.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

8.1. asciimatics package 135

asciimatics Documentation, Release 1.13.1

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.Particle(chars, x, y, dx, dy, colours, life_time, move,
next_colour=None, next_char=None, parm=None,
on_create=None, on_each=None, on_destroy=None)

Bases: object

A single particle in a Particle Effect.

Parameters

• chars – String of characters to use for the particle.

• x – The initial horizontal position of the particle.

• y – The initial vertical position of the particle.

• dx – The initial horizontal velocity of the particle.

• dy – The initial vertical velocity of the particle.

• colours – A list of colour tuples to use for the particle.

• life_time – The life time of the particle.

• move – A function which returns the next location of the particle.

• next_colour – An optional function to return the next colour for the particle. Defaults
to a linear progression of chars.

• next_char – An optional function to return the next character for the particle. Defaults
to a linear progression of colours.

• parm – An optional parameter for use within any of the

• on_create – An optional function to spawn new particles when this particle first is cre-
ated.

• on_each – An optional function to spawn new particles for every frame of this particle
(other than creation/destruction).

• on_destroy – An optional function to spawn new particles when this particle is de-
stroyed.

last()
The last attributes returned for this particle - typically used for clearing out the particle on the next frame.
See next() for details of the returned results.

136 Chapter 8. asciimatics

https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

next()
The set of attributes for this particle for the next frame to be rendered.

Returns A tuple of (character, x, y, fg, attribute, bg)

class asciimatics.particles.ParticleEffect(screen, x, y, life_time, **kwargs)
Bases: asciimatics.effects.Effect

An Effect that uses a ParticleEmitter to create the animation.

To define a new ParticleEffect, you must implement the reset() method to construct a chain of ParticleEmitter
objects and append them to the internal _active_systems list.

Parameters

• screen – The Screen being used for the Scene.

• x – The column (x coordinate) for the origin of the effect.

• y – The line (y coordinate) for the origin of the effect.

• life_time – The life time of the effect.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

8.1. asciimatics package 137

asciimatics Documentation, Release 1.13.1

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.ParticleEmitter(screen, x, y, count, new_particle, spawn,
life_time, blend=False)

Bases: object

An emitter for a particle system to create a set of _Particle objects for a ParticleEffect. After initial-
ization, the emitter will be called once per frame to be displayed on the Screen.

Parameters

• screen – The screen to which the particle system will be rendered.

• x – The x location of origin of the particle system.

• y – The y location of origin of the particle system.

• count – The count of new particles to spawn on each frame.

• new_particle – The function to call to spawn a new particle.

• spawn – The number of frames for which to spawn particles.

• life_time – The life time of the whole particle system.

• blend – Whether to blend particles or not. A blended system picks the colour based on
the number of overlapping particles, while an unblended one picks the colour based on a the
state of Each Particle individually as they are drawn. Defaults to False.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.Rain(screen, life_time, **kwargs)
Bases: asciimatics.particles.ParticleEffect

Rain storm effect.

See ParticleEffect for details of the parameters.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

138 Chapter 8. asciimatics

https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.RainSource(screen, life_time, on_each)
Bases: asciimatics.particles.ParticleEmitter

Source of the raindrops for a rain storm effect. This emits rain drops from a single line at the top of the screen
(starting sufficiently off- screen to ensure that it can cover all the screen due to horizontal motion).

Parameters

• screen – The Screen being used for this particle system.

• life_time – The life time of this particle system.

• on_each – Function to call on each iteration of the particle.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.RingExplosion(screen, x, y, life_time)
Bases: asciimatics.particles.ParticleEmitter

A classic firework explosion in a simple ring.

Parameters

• screen – The Screen being used for this particle system.

• x – The column (x coordinate) for the origin of this explosion.

• y – The line (y coordinate) for the origin of this explosion.

• life_time – The life time of this explosion.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.RingFirework(screen, x, y, life_time, **kwargs)
Bases: asciimatics.particles.ParticleEffect

Classic rocket with ring explosion.

Parameters

• screen – The Screen being used for the Scene.

8.1. asciimatics package 139

asciimatics Documentation, Release 1.13.1

• x – The column (x coordinate) for the origin of the effect.

• y – The line (y coordinate) for the origin of the effect.

• life_time – The life time of the effect.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.Rocket(screen, x, y, life_time, on_destroy=None)
Bases: asciimatics.particles.ParticleEmitter

A rocket being launched from the ground.

Parameters

• screen – The Screen being used for this particle system.

• x – The column (x coordinate) for the origin of the rocket.

• y – The line (y coordinate) for the origin of the rocket.

140 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• life_time – The life time of the rocket.

• on_destroy – The function to call when the rocket explodes.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.SerpentExplosion(screen, x, y, life_time)
Bases: asciimatics.particles.ParticleEmitter

A firework explosion where each trail changes direction.

Parameters

• screen – The Screen being used for this particle system.

• x – The column (x coordinate) for the origin of this explosion.

• y – The line (y coordinate) for the origin of this explosion.

• life_time – The life time of this explosion.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.SerpentFirework(screen, x, y, life_time, **kwargs)
Bases: asciimatics.particles.ParticleEffect

A firework where each trail changes direction.

Parameters

• screen – The Screen being used for the Scene.

• x – The column (x coordinate) for the origin of the effect.

• y – The line (y coordinate) for the origin of the effect.

• life_time – The life time of the effect.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

8.1. asciimatics package 141

asciimatics Documentation, Release 1.13.1

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.ShootScreen(screen, x, y, life_time, diameter=None, **kwargs)
Bases: asciimatics.particles.ParticleEffect

Shoot the screen out like a massive gunshot.

See ParticleEffect for details of the parameters.

In addition, it is possible to set the diameter of this effect using the extra keyword parameter.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

142 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.ShotEmitter(screen, x, y, diameter, life_time)
Bases: asciimatics.particles.ParticleEmitter

Replicate the whole screen with Particles and then explode the screen from a given location.

Parameters

• screen – The Screen being used for this particle system.

• x – The x position of the origin of the explosion.

• y – The y position of the origin of the explosion.

• diameter – The diameter of the explosion.

• life_time – The life time of this particle system.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.Splash(screen, x, y)
Bases: asciimatics.particles.ParticleEmitter

Splash effect for falling rain.

Parameters screen – The Screen being used for this particle system.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.StarExplosion(screen, x, y, life_time, points, on_each)
Bases: asciimatics.particles.ParticleEmitter

A classic firework explosion to a Peony shape with trails.

Parameters

• screen – The Screen being used for this particle system.

• x – The column (x coordinate) for the origin of this explosion.

• y – The line (y coordinate) for the origin of this explosion.

• life_time – The life time of this explosion.

• points – Number of points the explosion should have.

• on_each – The function to call to spawn a trail.

update()
The function to draw a new frame for the particle system.

class asciimatics.particles.StarFirework(screen, x, y, life_time, **kwargs)
Bases: asciimatics.particles.ParticleEffect

Classic rocket with star explosion.

8.1. asciimatics package 143

asciimatics Documentation, Release 1.13.1

Parameters

• screen – The Screen being used for the Scene.

• x – The column (x coordinate) for the origin of the effect.

• y – The line (y coordinate) for the origin of the effect.

• life_time – The life time of the effect.

Also see the common keyword arguments in Effect.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Reset the particle effect back to its initial state. This must be implemented by the child classes.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.particles.StarTrail(screen, x, y, life_time, colour)
Bases: asciimatics.particles.ParticleEmitter

A trail for a StarExplosion.

Parameters

• screen – The Screen being used for this particle system.

144 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• x – The column (x coordinate) for the origin of this trail.

• y – The line (y coordinate) for the origin of this trail.

• life_time – The life time of this trail.

• colour – The colour of this trail.

update()
The function to draw a new frame for the particle system.

8.1.9 asciimatics.paths module

This module provides Paths to create animation effects with Sprites. For more details see http://asciimatics.
readthedocs.io/en/latest/animation.html

class asciimatics.paths.DynamicPath(screen, x, y)
Bases: asciimatics.paths._AbstractPath

Class to create a dynamic path that reacts to events

The Screen will reset() the Path before iterating through each position using next_pos() and checking whether it
has reached the end using is_finished().

To implement a DynamicPath, override the process_event() method to react to any user input.

is_finished()

Returns Whether this path has got to the end.

next_pos()

Returns The next position tuple (x, y) for the Sprite on this path.

process_event(event)
Process any mouse event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

reset()
Reset the Path for use next time.

class asciimatics.paths.Path
Bases: asciimatics.paths._AbstractPath

Class to record and play back the motion of a Sprite.

The Screen will reset() the Path before iterating through each position using next_pos() and checking whether it
has reached the end using is_finished().

To define a Path, use the methods to jump to a location, wait or move between points.

is_finished()

Returns Whether this path has got to the end.

jump_to(x, y)
Jump straight to the newly specified location - i.e. teleport there and don’t create a path to get there.

Parameters

• x – X coord for the end position.

• y – Y coord for the end position.

8.1. asciimatics package 145

http://asciimatics.readthedocs.io/en/latest/animation.html
http://asciimatics.readthedocs.io/en/latest/animation.html

asciimatics Documentation, Release 1.13.1

move_round_to(points, steps)
Follow a path pre-defined by a set of at least 4 points. This Path will interpolate the points into a curve and
follow that curve.

Parameters

• points – The list of points that defines the path.

• steps – The number of steps to take to follow the path.

move_straight_to(x, y, steps)
Move straight to the newly specified location - i.e. create a straight line Path from the current location to
the specified point.

Parameters

• x – X coord for the end position.

• y – Y coord for the end position.

• steps – How many steps to take for the move.

next_pos()

Returns The next position tuple (x, y) for the Sprite on this path.

reset()
Reset the Path for use next time.

wait(delay)
Wait at the current location for the specified number of iterations.

Parameters delay – The time to wait (in animation frames).

8.1.10 asciimatics.scene module

This module defines Scene objects for animation purposes. For more details, see http://asciimatics.readthedocs.io/en/
latest/animation.html

class asciimatics.scene.Scene(effects, duration=0, clear=True, name=None)
Bases: object

Class to store the details of a single scene to be displayed. This is made up of a set of Effect objects.
See the documentation for Effect to understand the interaction between the two classes and http://asciimatics.
readthedocs.io/en/latest/animation.html for how to use them together.

Parameters

• effects – The list of effects to apply to this scene.

• duration – The number of frames in this Scene. A value of 0 means that the Scene should
query the Effects to find the duration. A value of -1 means don’t stop.

• clear – Whether to clear the Screen at the start of the Scene.

• name – Optional name to identify the scene.

add_effect(effect, reset=True)
Add an effect to the Scene.

This method can be called at any time - even when playing the Scene. The default logic assumes that the
Effect needs to be reset before being displayed. This can be overridden using the reset parameter.

Parameters

146 Chapter 8. asciimatics

http://asciimatics.readthedocs.io/en/latest/animation.html
http://asciimatics.readthedocs.io/en/latest/animation.html
https://docs.python.org/3/library/functions.html#object
http://asciimatics.readthedocs.io/en/latest/animation.html
http://asciimatics.readthedocs.io/en/latest/animation.html

asciimatics Documentation, Release 1.13.1

• effect – The Effect to be added.

• reset – Whether to reset the Effect that has just been added.

clear

Returns Whether the Scene should clear at the start.

duration

Returns The length of the scene in frames.

effects

Returns The list of Effects in this Scene.

exit()
Handle any tidy up required on the exit of the Scene.

name

Returns The name of this Scene. May be None.

process_event(event)
Process a new input event.

This method will pass the event on to any Effects in reverse Z order so that the top-most Effect has priority.

Parameters event – The Event that has been triggered.

Returns None if the Scene processed the event, else the original event.

remove_effect(effect)
Remove an effect from the scene.

Parameters effect – The effect to remove.

reset(old_scene=None, screen=None)
Reset the scene ready for playing.

Parameters

• old_scene – The previous version of this Scene that was running before the application
reset - e.g. due to a screen resize.

• screen – New screen to use if old_scene is not None.

8.1.11 asciimatics.screen module

This module defines common screen output function. For more details, see http://asciimatics.readthedocs.io/en/latest/
io.html

class asciimatics.screen.Canvas(screen, height, width, x=None, y=None)
Bases: asciimatics.screen._AbstractCanvas

A Canvas is an object that can be used to draw to the screen. It maintains its own buffer that will be flushed to
the screen when refresh() is called.

Parameters

• screen – The underlying Screen that will be drawn to on refresh.

• height – The height of the screen buffer to be used.

• width – The width of the screen buffer to be used.

• x – The x position for the top left corner of the Canvas.

8.1. asciimatics package 147

http://asciimatics.readthedocs.io/en/latest/io.html
http://asciimatics.readthedocs.io/en/latest/io.html

asciimatics Documentation, Release 1.13.1

• y – The y position for the top left corner of the Canvas.

If either of the x or y positions is not set, the Canvas will default to centring within the current Screen for that
location.

block_transfer(buffer, x, y)
Copy a buffer to the screen double buffer at a specified location.

Parameters

• buffer – The double buffer to copy

• x – The X origin for where to place it in the Screen

• y – The Y origin for where to place it in the Screen

centre(text, y, colour=7, attr=0, colour_map=None)
Centre the text on the specified line (y) using the optional colour and attributes.

Parameters

• text – The (single line) text to be printed.

• y – The line (y coord) for the start of the text.

• colour – The colour of the text to be displayed.

• attr – The cell attribute of the text to be displayed.

• colour_map – Colour/attribute list for multi-colour text.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.

clear_buffer(fg, attr, bg, x=0, y=0, w=None, h=None)
Clear a box in the current double-buffer used by this object.

This is the recommended way to clear parts, or all, ofthe Screen without causing flicker as it will only
become visible at the next refresh. Defaults to the whole buffer if no box is specified.

Parameters

• fg – The foreground colour to use for the new buffer.

• attr – The attribute value to use for the new buffer.

• bg – The background colour to use for the new buffer.

• x – Optional X coordinate for top left of box.

• y – Optional Y coordinate for top left of box.

• w – Optional width of the box.

• h – Optional height of the box.

dimensions

Returns The full dimensions of the canvas as a (height, width) tuple.

draw(x, y, char=None, colour=7, bg=0, thin=False)
Draw a line from drawing cursor to the specified position.

This uses a modified Bressenham algorithm, interpolating twice as many points to render down to anti-
aliased characters when no character is specified, or uses standard algorithm plotting with the specified
character.

Parameters

• x – The column (x coord) for the location to check.

148 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• y – The line (y coord) for the location to check.

• char – Optional character to use to draw the line.

• colour – Optional colour for plotting the line.

• bg – Optional background colour for plotting the line.

• thin – Optional width of anti-aliased line.

fill_polygon(polygons, colour=7, bg=0)
Draw a filled polygon.

This function uses the scan line algorithm to create the polygon. See https://www.cs.uic.edu/~jbell/
CourseNotes/ComputerGraphics/PolygonFilling.html for details.

Parameters

• polygons – A list of polygons (which are each a list of (x,y) coordinates for the points
of the polygon) - i.e. nested list of 2-tuples.

• colour – The foreground colour to use for the polygon

• bg – The background colour to use for the polygon

get_from(x, y)
Get the character at the specified location.

Parameters

• x – The column (x coord) of the character.

• y – The row (y coord) of the character.

Returns A 4-tuple of (ascii code, foreground, attributes, background) for the character at the
location.

highlight(x, y, w, h, fg=None, bg=None, blend=100)
Highlight a specified section of the screen.

Parameters

• x – The column (x coord) for the start of the highlight.

• y – The line (y coord) for the start of the highlight.

• w – The width of the highlight (in characters).

• h – The height of the highlight (in characters).

• fg – The foreground colour of the highlight.

• bg – The background colour of the highlight.

• blend – How much (as a percentage) to take of the new colour when blending.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class. If fg
or bg are None that means don’t change the foreground/background as appropriate.

is_visible(x, y)
Return whether the specified location is on the visible screen.

Parameters

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

8.1. asciimatics package 149

https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html
https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html

asciimatics Documentation, Release 1.13.1

move(x, y)
Move the drawing cursor to the specified position.

Parameters

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

origin
The location of top left corner of the canvas on the Screen.

Returns A tuple (x, y) of the location

paint(text, x, y, colour=7, attr=0, bg=0, transparent=False, colour_map=None)
Paint multi-colour text at the defined location.

Parameters

• text – The (single line) text to be printed.

• x – The column (x coord) for the start of the text.

• y – The line (y coord) for the start of the text.

• colour – The default colour of the text to be displayed.

• attr – The default cell attribute of the text to be displayed.

• bg – The default background colour of the text to be displayed.

• transparent – Whether to print spaces or not, thus giving a transparent effect.

• colour_map – Colour/attribute list for multi-colour text.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.
colour_map is a list of tuples (foreground, attribute, background) that must be the same length as the
passed in text (or None if no mapping is required).

palette

Returns A palette compatible with the PIL.

print_at(text, x, y, colour=7, attr=0, bg=0, transparent=False)
Print the text at the specified location using the specified colour and attributes.

Parameters

• text – The (single line) text to be printed.

• x – The column (x coord) for the start of the text.

• y – The line (y coord) for the start of the text.

• colour – The colour of the text to be displayed.

• attr – The cell attribute of the text to be displayed.

• bg – The background colour of the text to be displayed.

• transparent – Whether to print spaces or not, thus giving a transparent effect.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.

refresh()
Flush the canvas content to the underlying screen.

reset()
Reset the internal buffers for the abstract canvas.

150 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

scroll(lines=1)
Scroll the abstract canvas up one line.

Parameters lines – The number of lines to scroll. Defaults to down by one.

scroll_to(line)
Scroll the abstract canvas to make a specific line.

Parameters line – The line to scroll to.

start_line

Returns The start line of the top of the canvas.

unicode_aware

Returns Whether unicode input/output is supported or not.

class asciimatics.screen.ManagedScreen(func=<function ManagedScreen.<lambda>>)
Bases: object

Decorator and class to create a managed Screen. It can be used in two ways. If used as a method decorator it
will create and open a new Screen, pass the screen to the method as a keyword argument, and close the screen
when the method has completed. If used with the with statement the class will create and open a new Screen,
return the screen for using in the block, and close the screen when the statement ends. Note that any arguments
are in this class so that you can use it as a decorator or using the with statment. No arguments are required to
use.

Parameters func – The function to call once the Screen has been created.

class asciimatics.screen.Screen(height, width, buffer_height, unicode_aware)
Bases: asciimatics.screen._AbstractCanvas

Class to track basic state of the screen. This constructs the necessary resources to allow us to do the ASCII
animations.

This is an abstract class that will build the correct concrete class for you when you call wrapper(). If needed,
you can use the open() and close() methods for finer grained control of the construction and tidy up.

Note that you need to define the required height for your screen buffer. This is important if you plan on using
any Effects that will scroll the screen vertically (e.g. Scroll). It must be big enough to handle the full scrolling
of your selected Effect.

Don’t call this constructor directly.

block_transfer(buffer, x, y)
Copy a buffer to the screen double buffer at a specified location.

Parameters

• buffer – The double buffer to copy

• x – The X origin for where to place it in the Screen

• y – The Y origin for where to place it in the Screen

centre(text, y, colour=7, attr=0, colour_map=None)
Centre the text on the specified line (y) using the optional colour and attributes.

Parameters

• text – The (single line) text to be printed.

• y – The line (y coord) for the start of the text.

• colour – The colour of the text to be displayed.

8.1. asciimatics package 151

https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

• attr – The cell attribute of the text to be displayed.

• colour_map – Colour/attribute list for multi-colour text.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.

clear()
Clear the Screen of all content.

Note that this will instantly clear the Screen and reset all buffers to the default state, without waiting for
you to call refresh(). It is designed for use once at the start of your application to reset all buffers and
the screen to a known state.

If you want to clear parts, or all, of the Screen inside your application without any flicker, use
clear_buffer() instead.

clear_buffer(fg, attr, bg, x=0, y=0, w=None, h=None)
Clear a box in the current double-buffer used by this object.

This is the recommended way to clear parts, or all, ofthe Screen without causing flicker as it will only
become visible at the next refresh. Defaults to the whole buffer if no box is specified.

Parameters

• fg – The foreground colour to use for the new buffer.

• attr – The attribute value to use for the new buffer.

• bg – The background colour to use for the new buffer.

• x – Optional X coordinate for top left of box.

• y – Optional Y coordinate for top left of box.

• w – Optional width of the box.

• h – Optional height of the box.

close(restore=True)
Close down this Screen and tidy up the environment as required.

Parameters restore – whether to restore the environment or not.

static ctrl(char)
Calculate the control code for a given key. For example, this converts “a” to 1 (which is the code for ctrl-a).

Parameters char – The key to convert to a control code.

Returns The control code as an integer or None if unknown.

current_scene

Returns The scene currently being rendered. To be used in conjunction with
draw_next_frame().

dimensions

Returns The full dimensions of the canvas as a (height, width) tuple.

draw(x, y, char=None, colour=7, bg=0, thin=False)
Draw a line from drawing cursor to the specified position.

This uses a modified Bressenham algorithm, interpolating twice as many points to render down to anti-
aliased characters when no character is specified, or uses standard algorithm plotting with the specified
character.

Parameters

152 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

• char – Optional character to use to draw the line.

• colour – Optional colour for plotting the line.

• bg – Optional background colour for plotting the line.

• thin – Optional width of anti-aliased line.

draw_next_frame(repeat=True)
Draw the next frame in the currently configured Scenes. You must call set_scenes() before using this
for the first time.

Parameters repeat – Whether to repeat the Scenes once it has reached the end. Defaults to
True.

Raises StopApplication – if the application should be terminated.

fill_polygon(polygons, colour=7, bg=0)
Draw a filled polygon.

This function uses the scan line algorithm to create the polygon. See https://www.cs.uic.edu/~jbell/
CourseNotes/ComputerGraphics/PolygonFilling.html for details.

Parameters

• polygons – A list of polygons (which are each a list of (x,y) coordinates for the points
of the polygon) - i.e. nested list of 2-tuples.

• colour – The foreground colour to use for the polygon

• bg – The background colour to use for the polygon

force_update(full_refresh=False)
Force the Screen to redraw the current Scene on the next call to draw_next_frame, overriding the
frame_update_count value for all the Effects.

Parameters full_refresh – if True force the whole screen to redraw.

get_event()
Check for any events (e.g. key-press or mouse movement) without waiting.

Returns A Event object if anything was detected, otherwise it returns None.

get_from(x, y)
Get the character at the specified location.

Parameters

• x – The column (x coord) of the character.

• y – The row (y coord) of the character.

Returns A 4-tuple of (ascii code, foreground, attributes, background) for the character at the
location.

get_key()
Check for a key without waiting. This method is deprecated. Use get_event() instead.

getch(x, y)
Get the character at a specified location. This method is deprecated. Use get_from() instead.

Parameters

8.1. asciimatics package 153

https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html
https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html

asciimatics Documentation, Release 1.13.1

• x – The x coordinate.

• y – The y coordinate.

has_resized()
Check whether the screen has been re-sized.

Returns True when the screen has been re-sized since the last check.

highlight(x, y, w, h, fg=None, bg=None, blend=100)
Highlight a specified section of the screen.

Parameters

• x – The column (x coord) for the start of the highlight.

• y – The line (y coord) for the start of the highlight.

• w – The width of the highlight (in characters).

• h – The height of the highlight (in characters).

• fg – The foreground colour of the highlight.

• bg – The background colour of the highlight.

• blend – How much (as a percentage) to take of the new colour when blending.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class. If fg
or bg are None that means don’t change the foreground/background as appropriate.

is_visible(x, y)
Return whether the specified location is on the visible screen.

Parameters

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

move(x, y)
Move the drawing cursor to the specified position.

Parameters

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

classmethod open(height=None, catch_interrupt=False, unicode_aware=None)
Construct a new Screen for any platform. This will just create the correct Screen object for your environ-
ment. See wrapper() for a function to create and tidy up once you’ve finished with the Screen.

Parameters

• height – The buffer height for this window (for testing only).

• catch_interrupt – Whether to catch and prevent keyboard interrupts. Defaults to
False to maintain backwards compatibility.

• unicode_aware – Whether the application can use unicode or not. If None, try to
detect from the environment if UTF-8 is enabled.

paint(text, x, y, colour=7, attr=0, bg=0, transparent=False, colour_map=None)
Paint multi-colour text at the defined location.

Parameters

154 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

• text – The (single line) text to be printed.

• x – The column (x coord) for the start of the text.

• y – The line (y coord) for the start of the text.

• colour – The default colour of the text to be displayed.

• attr – The default cell attribute of the text to be displayed.

• bg – The default background colour of the text to be displayed.

• transparent – Whether to print spaces or not, thus giving a transparent effect.

• colour_map – Colour/attribute list for multi-colour text.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.
colour_map is a list of tuples (foreground, attribute, background) that must be the same length as the
passed in text (or None if no mapping is required).

palette

Returns A palette compatible with the PIL.

play(scenes, stop_on_resize=False, unhandled_input=None, start_scene=None, repeat=True, al-
low_int=False)

Play a set of scenes.

This is effectively a helper function to wrap set_scenes() and draw_next_frame() to simplify
animation for most applications.

Parameters

• scenes – a list of Scene objects to play.

• stop_on_resize – Whether to stop when the screen is resized. Default is to carry
on regardless - which will typically result in an error. This is largely done for back-
compatibility.

• unhandled_input – Function to call for any input not handled by the Scenes/Effects
being played. Defaults to a function that closes the application on “Q” or “X” being
pressed.

• start_scene – The old Scene to start from. This must have name that matches the
name of one of the Scenes passed in.

• repeat – Whether to repeat the Scenes once it has reached the end. Defaults to True.

• allow_int – Allow input to interrupt frame rate delay.

Raises ResizeScreenError – if the screen is resized (and allowed by stop_on_resize).

The unhandled input function just takes one parameter - the input event that was not handled.

print_at(text, x, y, colour=7, attr=0, bg=0, transparent=False)
Print the text at the specified location using the specified colour and attributes.

Parameters

• text – The (single line) text to be printed.

• x – The column (x coord) for the start of the text.

• y – The line (y coord) for the start of the text.

• colour – The colour of the text to be displayed.

• attr – The cell attribute of the text to be displayed.

8.1. asciimatics package 155

asciimatics Documentation, Release 1.13.1

• bg – The background colour of the text to be displayed.

• transparent – Whether to print spaces or not, thus giving a transparent effect.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.

putch(text, x, y, colour=7, attr=0, bg=0, transparent=False)
Print text at the specified location. This method is deprecated. Use print_at() instead.

Parameters

• text – The (single line) text to be printed.

• x – The column (x coord) for the start of the text.

• y – The line (y coord) for the start of the text.

• colour – The colour of the text to be displayed.

• attr – The cell attribute of the text to be displayed.

• bg – The background colour of the text to be displayed.

• transparent – Whether to print spaces or not, thus giving a transparent effect.

refresh()
Refresh the screen.

reset()
Reset the internal buffers for the abstract canvas.

scroll(lines=1)
Scroll the abstract canvas up one line.

Parameters lines – The number of lines to scroll. Defaults to down by one.

scroll_to(line)
Scroll the abstract canvas to make a specific line.

Parameters line – The line to scroll to.

set_scenes(scenes, unhandled_input=None, start_scene=None)
Remember a set of scenes to be played. This must be called before using draw_next_frame().

Parameters

• scenes – a list of Scene objects to play.

• unhandled_input – Function to call for any input not handled by the Scenes/Effects
being played. Defaults to a function that closes the application on “Q” or “X” being
pressed.

• start_scene – The old Scene to start from. This must have name that matches the
name of one of the Scenes passed in.

Raises ResizeScreenError – if the screen is resized (and allowed by stop_on_resize).

The unhandled input function just takes one parameter - the input event that was not handled.

set_title(title)
Set the title for this terminal/console session. This will typically change the text displayed in the window
title bar.

Parameters title – The title to be set.

start_line

Returns The start line of the top of the canvas.

156 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

unicode_aware

Returns Whether unicode input/output is supported or not.

wait_for_input(timeout)
Wait until there is some input or the timeout is hit.

Parameters timeout – Time to wait for input in seconds (floating point).

classmethod wrapper(func, height=None, catch_interrupt=False, arguments=None, uni-
code_aware=None)

Construct a new Screen for any platform. This will initialize the Screen, call the specified function and
then tidy up the system as required when the function exits.

Parameters

• func – The function to call once the Screen has been created.

• height – The buffer height for this Screen (only for test purposes).

• catch_interrupt – Whether to catch and prevent keyboard interrupts. Defaults to
False to maintain backwards compatibility.

• arguments – Optional arguments list to pass to func (after the Screen object).

• unicode_aware – Whether the application can use unicode or not. If None, try to
detect from the environment if UTF-8 is enabled.

class asciimatics.screen.TemporaryCanvas(height, width)
Bases: asciimatics.screen._AbstractCanvas

A TemporaryCanvas is an object that can only be used to draw to a buffer.

This class is desigend purely for use by dynamic renderers and so ignores some features of a full Canvas - most
notably the screen related fhnction (e.g. the screen buffer and related properties).

Parameters

• height – The height of the screen buffer to be used.

• width – The width of the screen buffer to be used.

block_transfer(buffer, x, y)
Copy a buffer to the screen double buffer at a specified location.

Parameters

• buffer – The double buffer to copy

• x – The X origin for where to place it in the Screen

• y – The Y origin for where to place it in the Screen

centre(text, y, colour=7, attr=0, colour_map=None)
Centre the text on the specified line (y) using the optional colour and attributes.

Parameters

• text – The (single line) text to be printed.

• y – The line (y coord) for the start of the text.

• colour – The colour of the text to be displayed.

• attr – The cell attribute of the text to be displayed.

• colour_map – Colour/attribute list for multi-colour text.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.

8.1. asciimatics package 157

asciimatics Documentation, Release 1.13.1

clear_buffer(fg, attr, bg, x=0, y=0, w=None, h=None)
Clear a box in the current double-buffer used by this object.

This is the recommended way to clear parts, or all, ofthe Screen without causing flicker as it will only
become visible at the next refresh. Defaults to the whole buffer if no box is specified.

Parameters

• fg – The foreground colour to use for the new buffer.

• attr – The attribute value to use for the new buffer.

• bg – The background colour to use for the new buffer.

• x – Optional X coordinate for top left of box.

• y – Optional Y coordinate for top left of box.

• w – Optional width of the box.

• h – Optional height of the box.

dimensions

Returns The full dimensions of the canvas as a (height, width) tuple.

draw(x, y, char=None, colour=7, bg=0, thin=False)
Draw a line from drawing cursor to the specified position.

This uses a modified Bressenham algorithm, interpolating twice as many points to render down to anti-
aliased characters when no character is specified, or uses standard algorithm plotting with the specified
character.

Parameters

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

• char – Optional character to use to draw the line.

• colour – Optional colour for plotting the line.

• bg – Optional background colour for plotting the line.

• thin – Optional width of anti-aliased line.

fill_polygon(polygons, colour=7, bg=0)
Draw a filled polygon.

This function uses the scan line algorithm to create the polygon. See https://www.cs.uic.edu/~jbell/
CourseNotes/ComputerGraphics/PolygonFilling.html for details.

Parameters

• polygons – A list of polygons (which are each a list of (x,y) coordinates for the points
of the polygon) - i.e. nested list of 2-tuples.

• colour – The foreground colour to use for the polygon

• bg – The background colour to use for the polygon

get_from(x, y)
Get the character at the specified location.

Parameters

• x – The column (x coord) of the character.

158 Chapter 8. asciimatics

https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html
https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html

asciimatics Documentation, Release 1.13.1

• y – The row (y coord) of the character.

Returns A 4-tuple of (ascii code, foreground, attributes, background) for the character at the
location.

highlight(x, y, w, h, fg=None, bg=None, blend=100)
Highlight a specified section of the screen.

Parameters

• x – The column (x coord) for the start of the highlight.

• y – The line (y coord) for the start of the highlight.

• w – The width of the highlight (in characters).

• h – The height of the highlight (in characters).

• fg – The foreground colour of the highlight.

• bg – The background colour of the highlight.

• blend – How much (as a percentage) to take of the new colour when blending.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class. If fg
or bg are None that means don’t change the foreground/background as appropriate.

is_visible(x, y)
Return whether the specified location is on the visible screen.

Parameters

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

move(x, y)
Move the drawing cursor to the specified position.

Parameters

• x – The column (x coord) for the location to check.

• y – The line (y coord) for the location to check.

paint(text, x, y, colour=7, attr=0, bg=0, transparent=False, colour_map=None)
Paint multi-colour text at the defined location.

Parameters

• text – The (single line) text to be printed.

• x – The column (x coord) for the start of the text.

• y – The line (y coord) for the start of the text.

• colour – The default colour of the text to be displayed.

• attr – The default cell attribute of the text to be displayed.

• bg – The default background colour of the text to be displayed.

• transparent – Whether to print spaces or not, thus giving a transparent effect.

• colour_map – Colour/attribute list for multi-colour text.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.
colour_map is a list of tuples (foreground, attribute, background) that must be the same length as the
passed in text (or None if no mapping is required).

8.1. asciimatics package 159

asciimatics Documentation, Release 1.13.1

palette

Returns A palette compatible with the PIL.

print_at(text, x, y, colour=7, attr=0, bg=0, transparent=False)
Print the text at the specified location using the specified colour and attributes.

Parameters

• text – The (single line) text to be printed.

• x – The column (x coord) for the start of the text.

• y – The line (y coord) for the start of the text.

• colour – The colour of the text to be displayed.

• attr – The cell attribute of the text to be displayed.

• bg – The background colour of the text to be displayed.

• transparent – Whether to print spaces or not, thus giving a transparent effect.

The colours and attributes are the COLOUR_xxx and A_yyy constants defined in the Screen class.

refresh()
Refresh this object - this will draw to the underlying display interface.

reset()
Reset the internal buffers for the abstract canvas.

scroll(lines=1)
Scroll the abstract canvas up one line.

Parameters lines – The number of lines to scroll. Defaults to down by one.

scroll_to(line)
Scroll the abstract canvas to make a specific line.

Parameters line – The line to scroll to.

start_line

Returns The start line of the top of the canvas.

unicode_aware

Returns Whether unicode input/output is supported or not.

8.1.12 asciimatics.sprites module

This module provides Sprites to create animation effects with Paths. For more details see http://asciimatics.
readthedocs.io/en/latest/animation.html

class asciimatics.sprites.Arrow(screen, path, colour=7, start_frame=0, stop_frame=0)
Bases: asciimatics.effects.Sprite

Sample arrow sprite - points where it is going.

See Sprite for details.

delete_count
The number of frames before this Effect should be deleted.

160 Chapter 8. asciimatics

http://asciimatics.readthedocs.io/en/latest/animation.html
http://asciimatics.readthedocs.io/en/latest/animation.html

asciimatics Documentation, Release 1.13.1

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

last_position()
Returns the last position of this Sprite as a tuple (x, y, width, height).

overlaps(other, use_new_pos=False)
Check whether this Sprite overlaps another.

Parameters

• other – The other Sprite to check for an overlap.

• use_new_pos – Whether to use latest position (due to recent update). Defaults to False.

Returns True if the two Sprites overlap.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.sprites.Plot(screen, path, colour=7, start_frame=0, stop_frame=0)
Bases: asciimatics.effects.Sprite

Sample Sprite that simply plots an “X” for each step in the path. Useful for plotting a path to the screen.

See Sprite for details.

8.1. asciimatics package 161

asciimatics Documentation, Release 1.13.1

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

last_position()
Returns the last position of this Sprite as a tuple (x, y, width, height).

overlaps(other, use_new_pos=False)
Check whether this Sprite overlaps another.

Parameters

• other – The other Sprite to check for an overlap.

• use_new_pos – Whether to use latest position (due to recent update). Defaults to False.

Returns True if the two Sprites overlap.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

class asciimatics.sprites.Sam(screen, path, start_frame=0, stop_frame=0)
Bases: asciimatics.effects.Sprite

Sam Paul sprite - an simple sample animated character.

162 Chapter 8. asciimatics

asciimatics Documentation, Release 1.13.1

See Sprite for details.

delete_count
The number of frames before this Effect should be deleted.

frame_update_count
The number of frames before this Effect should be updated.

Increasing this number potentially reduces the CPU load of a Scene (if no other Effect needs to be sched-
uled sooner), but can affect perceived responsiveness of the Scene if it is too long. Handle with care!

A value of 0 means refreshes are not required beyond a response to an input event. It defaults to 1 for all
Effects.

last_position()
Returns the last position of this Sprite as a tuple (x, y, width, height).

overlaps(other, use_new_pos=False)
Check whether this Sprite overlaps another.

Parameters

• other – The other Sprite to check for an overlap.

• use_new_pos – Whether to use latest position (due to recent update). Defaults to False.

Returns True if the two Sprites overlap.

process_event(event)
Process any input event.

Parameters event – The event that was triggered.

Returns None if the Effect processed the event, else the original event.

register_scene(scene)
Register the Scene that owns this Effect.

Parameters scene – The Scene to be registered

reset()
Function to reset the effect when replaying the scene.

safe_to_default_unhandled_input
Whether it is safe to use the default handler for any unhandled input from this Effect.

A value of False means that asciimatics should not use the default handler. This is typically the case for
Frames.

scene
The Scene that owns this Effect.

screen
The Screen that will render this Effect.

stop_frame
Last frame for this effect. A value of zero means no specific end.

update(frame_no)
Process the animation effect for the specified frame number.

Parameters frame_no – The index of the frame being generated.

8.1. asciimatics package 163

asciimatics Documentation, Release 1.13.1

8.1.13 asciimatics.strings module

This module provides classes to handle embedded control strings for widgets.

class asciimatics.strings.ColouredText(raw_text, parser, colour=None, colour_map=None,
offsets=None, text=None)

Bases: object

Unicode string-like object to store text and colour maps, using a parser to convert the raw text passed in into
visible text and an associated colour map. This only handles simple colour change commands and will ignore
more complex commands).

Parameters

• raw_text – The raw unicode string to be processed

• parser – The parser to process the text

• colour – Optional starting colour tuple to use for this text.

• colour_map – Optional ready parsed colour map for this text.

• offsets – Optional ready parsed offsets for this text.

• text – Optional ready parsed text for this text.

The colour_map, offsets and text options are to optimize creation of substrings from an existing ColouredText
object and should not be used in general.

colour_map
Colour map for the processed text (for use with paint method).

first_colour
First colour triplet used for this text.

join(others)
Join the list of ColouredObjects using this ColouredObject.

Parameters others – the list of other objects to join.

last_colour
Last colour triplet used for this text.

raw_text
Raw (unprocessed) text for this object.

startswith(text)
Check whether parsed (i.e. displayed) text starts woth specified string.

8.1.14 asciimatics.utilities module

This module is just a collection of simple helper functions.

class asciimatics.utilities.BoxTool(unicode_aware, style=1)
Bases: object

Tool for building boxes out of characters.

Supports a variety of line styles from asciimatics.constants:

• ASCII_LINE – ASCII safe characters (0)

• SINGLE_LINE – Unicode based single lined box (1)

• DOUBLE_LINE – Unicode based double lined box (2)

164 Chapter 8. asciimatics

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

asciimatics Documentation, Release 1.13.1

Individual characters of a box can be accessed directly through attributes. Most attribute names are based on the
Extended-ASCII characters used for the UNICODE version of the shape. The names describe the directions the
piece point in (not the part of the box). For example, “up_left” is a corner piece that has a part that points up
and a part that points left – the character usually used for the bottom right hand corner of a box.

Attribute values are:

• up_left – corner piece facing up and left

• up_right – corner piece facing up and right

• down_left – corner piece facing down and left

• down_right – corner piece facing down and right

• h – horizontal line

• v – vertical line

• v_inside – vertical line used inside the grid

• v_left – vertical line with mid joiner facing to the left

• v_right – vertical line with mid joiner facing to the right

• h_up – horizontal line with a mid joiner facing up

• h_down – horizontal line with a mid joiner facing down

• cross – intersection between vertical and horizontal

Parameters

• unicode_aware – boolean indicating if the terminal is Unicode aware. If False, will
force the use of the ASCII style

• style – line style specifier. Supports ASCII_LINE, SINGLE_LINE, and
DOUBLE_LINE. Defaults to SINGLE_LINE.

box(width, height)
Returns a string containing a box with the given width and height.

box_bottom(width)
Returns a string containing the bottom border of a box

Parameters width – width of box, including corners

box_line(width)
Returns a string with a vertical bar on each end, padded with spaces in between for the given width.

Parameters width – width of box including sides

box_top(width)
Returns a string containing the top border of a box

Parameters width – width of box, including corners

style
The line drawing style used to draw boxes. Possible styles are set in asciimatics.constants.

Parameters style – One of ASCII_LINE, SINGLE_LINE, or DOUBLE_LINE

asciimatics.utilities.readable_mem(mem)

Parameters mem – An integer number of bytes to convert to human-readable form.

Returns A human-readable string representation of the number.

8.1. asciimatics package 165

asciimatics Documentation, Release 1.13.1

asciimatics.utilities.readable_timestamp(stamp)

Parameters stamp – A floating point number representing the POSIX file timestamp.

Returns A short human-readable string representation of the timestamp.

8.1.15 asciimatics.version module

8.1.16 Module contents

Asciimatics is a package to help people create full-screen text UIs (from interactive forms to ASCII animations) on
any platform. It is licensed under the Apache Software Foundation License 2.0.

166 Chapter 8. asciimatics

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

167

asciimatics Documentation, Release 1.13.1

168 Chapter 9. Indices and tables

Python Module Index

a
asciimatics, 166
asciimatics.constants, 112
asciimatics.effects, 112
asciimatics.event, 128
asciimatics.exceptions, 129
asciimatics.parsers, 130
asciimatics.particles, 132
asciimatics.paths, 145
asciimatics.renderers, 58
asciimatics.renderers.base, 45
asciimatics.renderers.box, 47
asciimatics.renderers.charts, 47
asciimatics.renderers.figlettext, 50
asciimatics.renderers.fire, 51
asciimatics.renderers.images, 51
asciimatics.renderers.kaleidoscope, 53
asciimatics.renderers.plasma, 53
asciimatics.renderers.players, 54
asciimatics.renderers.rainbow, 55
asciimatics.renderers.rotatedduplicate,

56
asciimatics.renderers.scales, 56
asciimatics.renderers.speechbubble, 57
asciimatics.scene, 146
asciimatics.screen, 147
asciimatics.sprites, 160
asciimatics.strings, 164
asciimatics.utilities, 164
asciimatics.version, 166
asciimatics.widgets, 112
asciimatics.widgets.baselistbox, 69
asciimatics.widgets.button, 69
asciimatics.widgets.checkbox, 71
asciimatics.widgets.datepicker, 73
asciimatics.widgets.divider, 75
asciimatics.widgets.dropdownlist, 77
asciimatics.widgets.filebrowser, 79
asciimatics.widgets.frame, 81

asciimatics.widgets.label, 84
asciimatics.widgets.layout, 86
asciimatics.widgets.listbox, 89
asciimatics.widgets.multicolumnlistbox,

91
asciimatics.widgets.popupdialog, 94
asciimatics.widgets.popupmenu, 97
asciimatics.widgets.radiobuttons, 99
asciimatics.widgets.scrollbar, 101
asciimatics.widgets.temppopup, 101
asciimatics.widgets.text, 101
asciimatics.widgets.textbox, 104
asciimatics.widgets.timepicker, 106
asciimatics.widgets.utilities, 108
asciimatics.widgets.verticaldivider, 108
asciimatics.widgets.widget, 110

169

asciimatics Documentation, Release 1.13.1

170 Python Module Index

Index

A
AbstractScreenPlayer (class in asciimat-

ics.renderers), 64
AbstractScreenPlayer (class in asciimat-

ics.renderers.players), 54
add_effect() (asciimatics.scene.Scene method), 146
add_effect() (asciimatics.widgets.frame.Frame

method), 82
add_effect() (asciimat-

ics.widgets.popupdialog.PopUpDialog
method), 94

add_effect() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
97

add_layout() (asciimatics.widgets.frame.Frame
method), 82

add_layout() (asciimat-
ics.widgets.popupdialog.PopUpDialog
method), 94

add_layout() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
97

add_widget() (asciimatics.widgets.layout.Layout
method), 87

AnsiArtPlayer (class in asciimatics.renderers), 65
AnsiArtPlayer (class in asciimat-

ics.renderers.players), 54
AnsiTerminalParser (class in asciimatics.parsers),

130
append() (asciimatics.parsers.AnsiTerminalParser

method), 130
append() (asciimatics.parsers.AsciimaticsParser

method), 131
append() (asciimatics.parsers.ControlCodeParser

method), 131
append() (asciimatics.parsers.Parser method), 132
Arrow (class in asciimatics.sprites), 160
asciimatics (module), 166
asciimatics.constants (module), 112

asciimatics.effects (module), 112
asciimatics.event (module), 128
asciimatics.exceptions (module), 129
asciimatics.parsers (module), 130
asciimatics.particles (module), 132
asciimatics.paths (module), 145
asciimatics.renderers (module), 58
asciimatics.renderers.base (module), 45
asciimatics.renderers.box (module), 47
asciimatics.renderers.charts (module), 47
asciimatics.renderers.figlettext (mod-

ule), 50
asciimatics.renderers.fire (module), 51
asciimatics.renderers.images (module), 51
asciimatics.renderers.kaleidoscope (mod-

ule), 53
asciimatics.renderers.plasma (module), 53
asciimatics.renderers.players (module), 54
asciimatics.renderers.rainbow (module), 55
asciimatics.renderers.rotatedduplicate

(module), 56
asciimatics.renderers.scales (module), 56
asciimatics.renderers.speechbubble (mod-

ule), 57
asciimatics.scene (module), 146
asciimatics.screen (module), 147
asciimatics.sprites (module), 160
asciimatics.strings (module), 164
asciimatics.utilities (module), 164
asciimatics.version (module), 166
asciimatics.widgets (module), 112
asciimatics.widgets.baselistbox (module),

69
asciimatics.widgets.button (module), 69
asciimatics.widgets.checkbox (module), 71
asciimatics.widgets.datepicker (module),

73
asciimatics.widgets.divider (module), 75
asciimatics.widgets.dropdownlist (mod-

ule), 77

171

asciimatics Documentation, Release 1.13.1

asciimatics.widgets.filebrowser (module),
79

asciimatics.widgets.frame (module), 81
asciimatics.widgets.label (module), 84
asciimatics.widgets.layout (module), 86
asciimatics.widgets.listbox (module), 89
asciimatics.widgets.multicolumnlistbox

(module), 91
asciimatics.widgets.popupdialog (module),

94
asciimatics.widgets.popupmenu (module), 97
asciimatics.widgets.radiobuttons (mod-

ule), 99
asciimatics.widgets.scrollbar (module),

101
asciimatics.widgets.temppopup (module),

101
asciimatics.widgets.text (module), 101
asciimatics.widgets.textbox (module), 104
asciimatics.widgets.timepicker (module),

106
asciimatics.widgets.utilities (module),

108
asciimatics.widgets.verticaldivider

(module), 108
asciimatics.widgets.widget (module), 110
AsciimaticsParser (class in asciimatics.parsers),

130
AsciinemaPlayer (class in asciimatics.renderers),

65
AsciinemaPlayer (class in asciimat-

ics.renderers.players), 55
ATTRIBUTES (in module asciimatics.renderers.base),

45
auto_scroll (asciimatics.widgets.textbox.TextBox at-

tribute), 104
axes_style (asciimatics.renderers.BarChart at-

tribute), 60
axes_style (asciimatics.renderers.charts.BarChart

attribute), 48
axes_style (asciimatics.renderers.charts.VBarChart

attribute), 49
axes_style (asciimatics.renderers.VBarChart at-

tribute), 62

B
Background (class in asciimatics.effects), 112
BannerText (class in asciimatics.effects), 113
BarChart (class in asciimatics.renderers), 59
BarChart (class in asciimatics.renderers.charts), 47
block_transfer() (asciimatics.screen.Canvas

method), 148
block_transfer() (asciimatics.screen.Screen

method), 151

block_transfer() (asciimat-
ics.screen.TemporaryCanvas method), 157

blur() (asciimatics.widgets.button.Button method), 69
blur() (asciimatics.widgets.checkbox.CheckBox

method), 71
blur() (asciimatics.widgets.datepicker.DatePicker

method), 73
blur() (asciimatics.widgets.divider.Divider method),

75
blur() (asciimatics.widgets.dropdownlist.DropdownList

method), 77
blur() (asciimatics.widgets.filebrowser.FileBrowser

method), 79
blur() (asciimatics.widgets.label.Label method), 85
blur() (asciimatics.widgets.layout.Layout method), 87
blur() (asciimatics.widgets.listbox.ListBox method),

89
blur() (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

method), 92
blur() (asciimatics.widgets.radiobuttons.RadioButtons

method), 99
blur() (asciimatics.widgets.text.Text method), 102
blur() (asciimatics.widgets.textbox.TextBox method),

104
blur() (asciimatics.widgets.timepicker.TimePicker

method), 106
blur() (asciimatics.widgets.verticaldivider.VerticalDivider

method), 108
blur() (asciimatics.widgets.widget.Widget method),

110
border_box (asciimatics.widgets.frame.Frame at-

tribute), 82
border_box (asciimat-

ics.widgets.popupdialog.PopUpDialog at-
tribute), 95

border_box (asciimat-
ics.widgets.popupmenu.PopupMenu attribute),
97

border_style (asciimatics.renderers.BarChart at-
tribute), 60

border_style (asciimat-
ics.renderers.charts.BarChart attribute),
48

border_style (asciimat-
ics.renderers.charts.VBarChart attribute),
50

border_style (asciimatics.renderers.VBarChart at-
tribute), 62

Box (class in asciimatics.renderers), 59
Box (class in asciimatics.renderers.box), 47
box() (asciimatics.utilities.BoxTool method), 165
box_bottom() (asciimatics.utilities.BoxTool method),

165
box_line() (asciimatics.utilities.BoxTool method),

172 Index

asciimatics Documentation, Release 1.13.1

165
box_top() (asciimatics.utilities.BoxTool method), 165
BoxTool (class in asciimatics.utilities), 164
Button (class in asciimatics.widgets.button), 69

C
canvas (asciimatics.widgets.frame.Frame attribute), 82
canvas (asciimatics.widgets.popupdialog.PopUpDialog

attribute), 95
canvas (asciimatics.widgets.popupmenu.PopupMenu

attribute), 97
Canvas (class in asciimatics.screen), 147
centre() (asciimatics.screen.Canvas method), 148
centre() (asciimatics.screen.Screen method), 151
centre() (asciimatics.screen.TemporaryCanvas

method), 157
CHANGE_COLOURS (asciimatics.parsers.Parser at-

tribute), 131
CheckBox (class in asciimatics.widgets.checkbox), 71
clear (asciimatics.scene.Scene attribute), 147
clear() (asciimatics.screen.Screen method), 152
clear_buffer() (asciimatics.screen.Canvas

method), 148
clear_buffer() (asciimatics.screen.Screen method),

152
clear_buffer() (asciimat-

ics.screen.TemporaryCanvas method), 158
CLEAR_SCREEN (asciimatics.parsers.Parser attribute),

131
clear_widgets() (asciimat-

ics.widgets.layout.Layout method), 87
Clock (class in asciimatics.effects), 114
clone() (asciimatics.widgets.frame.Frame method), 82
clone() (asciimatics.widgets.popupdialog.PopUpDialog

method), 95
clone() (asciimatics.widgets.popupmenu.PopupMenu

method), 97
close() (asciimatics.screen.Screen method), 152
Cog (class in asciimatics.effects), 115
colour_map (asciimatics.strings.ColouredText at-

tribute), 164
COLOUR_REGEX (in module asciimatics.constants), 112
ColouredText (class in asciimatics.strings), 164
ColourImageFile (class in asciimatics.renderers),

64
ColourImageFile (class in asciimat-

ics.renderers.images), 51
ControlCodeParser (class in asciimatics.parsers),

131
ctrl() (asciimatics.screen.Screen static method), 152
current_scene (asciimatics.screen.Screen attribute),

152
custom_colour (asciimatics.widgets.button.Button

attribute), 69

custom_colour (asciimat-
ics.widgets.checkbox.CheckBox attribute),
71

custom_colour (asciimat-
ics.widgets.datepicker.DatePicker attribute),
73

custom_colour (asciimatics.widgets.divider.Divider
attribute), 75

custom_colour (asciimat-
ics.widgets.dropdownlist.DropdownList at-
tribute), 77

custom_colour (asciimat-
ics.widgets.filebrowser.FileBrowser attribute),
80

custom_colour (asciimatics.widgets.label.Label at-
tribute), 85

custom_colour (asciimatics.widgets.listbox.ListBox
attribute), 89

custom_colour (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
attribute), 92

custom_colour (asciimat-
ics.widgets.radiobuttons.RadioButtons at-
tribute), 100

custom_colour (asciimatics.widgets.text.Text at-
tribute), 102

custom_colour (asciimatics.widgets.textbox.TextBox
attribute), 104

custom_colour (asciimat-
ics.widgets.timepicker.TimePicker attribute),
106

custom_colour (asciimat-
ics.widgets.verticaldivider.VerticalDivider
attribute), 108

custom_colour (asciimatics.widgets.widget.Widget
attribute), 110

Cycle (class in asciimatics.effects), 116

D
data (asciimatics.widgets.frame.Frame attribute), 82
data (asciimatics.widgets.popupdialog.PopUpDialog

attribute), 95
data (asciimatics.widgets.popupmenu.PopupMenu at-

tribute), 97
DatePicker (class in asciimatics.widgets.datepicker),

73
DELETE_CHARS (asciimatics.parsers.Parser attribute),

131
delete_count (asciimatics.effects.Background

attribute), 113
delete_count (asciimatics.effects.BannerText at-

tribute), 114
delete_count (asciimatics.effects.Clock attribute),

114

Index 173

asciimatics Documentation, Release 1.13.1

delete_count (asciimatics.effects.Cog attribute), 116
delete_count (asciimatics.effects.Cycle attribute),

116
delete_count (asciimatics.effects.Effect attribute),

118
delete_count (asciimatics.effects.Julia attribute),

119
delete_count (asciimatics.effects.Matrix attribute),

120
delete_count (asciimatics.effects.Mirage attribute),

120
delete_count (asciimatics.effects.Print attribute),

122
delete_count (asciimatics.effects.RandomNoise at-

tribute), 123
delete_count (asciimatics.effects.Scroll attribute),

124
delete_count (asciimatics.effects.Snow attribute),

124
delete_count (asciimatics.effects.Sprite attribute),

125
delete_count (asciimatics.effects.Stars attribute),

127
delete_count (asciimatics.effects.Wipe attribute),

127
delete_count (asciimatics.particles.DropScreen at-

tribute), 133
delete_count (asciimatics.particles.Explosion

attribute), 134
delete_count (asciimatics.particles.PalmFirework

attribute), 135
delete_count (asciimatics.particles.ParticleEffect at-

tribute), 137
delete_count (asciimatics.particles.Rain attribute),

138
delete_count (asciimatics.particles.RingFirework

attribute), 140
delete_count (asciimatics.particles.SerpentFirework

attribute), 141
delete_count (asciimatics.particles.ShootScreen at-

tribute), 142
delete_count (asciimatics.particles.StarFirework at-

tribute), 144
delete_count (asciimatics.sprites.Arrow attribute),

160
delete_count (asciimatics.sprites.Plot attribute), 161
delete_count (asciimatics.sprites.Sam attribute),

163
delete_count (asciimatics.widgets.frame.Frame at-

tribute), 82
delete_count (asciimat-

ics.widgets.popupdialog.PopUpDialog at-
tribute), 95

delete_count (asciimat-

ics.widgets.popupmenu.PopupMenu attribute),
97

DELETE_LINE (asciimatics.parsers.Parser attribute),
131

dimensions (asciimatics.screen.Canvas attribute), 148
dimensions (asciimatics.screen.Screen attribute), 152
dimensions (asciimatics.screen.TemporaryCanvas at-

tribute), 158
disable() (asciimatics.widgets.layout.Layout

method), 87
disabled (asciimatics.widgets.button.Button at-

tribute), 69
disabled (asciimatics.widgets.checkbox.CheckBox at-

tribute), 71
disabled (asciimatics.widgets.datepicker.DatePicker

attribute), 73
disabled (asciimatics.widgets.divider.Divider at-

tribute), 75
disabled (asciimatics.widgets.dropdownlist.DropdownList

attribute), 77
disabled (asciimatics.widgets.filebrowser.FileBrowser

attribute), 80
disabled (asciimatics.widgets.label.Label attribute),

85
disabled (asciimatics.widgets.listbox.ListBox at-

tribute), 89
disabled (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

attribute), 92
disabled (asciimatics.widgets.radiobuttons.RadioButtons

attribute), 100
disabled (asciimatics.widgets.text.Text attribute), 102
disabled (asciimatics.widgets.textbox.TextBox at-

tribute), 104
disabled (asciimatics.widgets.timepicker.TimePicker

attribute), 106
disabled (asciimatics.widgets.verticaldivider.VerticalDivider

attribute), 108
disabled (asciimatics.widgets.widget.Widget at-

tribute), 110
DISPLAY_TEXT (asciimatics.parsers.Parser attribute),

131
Divider (class in asciimatics.widgets.divider), 75
draw() (asciimatics.screen.Canvas method), 148
draw() (asciimatics.screen.Screen method), 152
draw() (asciimatics.screen.TemporaryCanvas method),

158
draw_next_frame() (asciimatics.screen.Screen

method), 153
DropdownList (class in asciimat-

ics.widgets.dropdownlist), 77
DropEmitter (class in asciimatics.particles), 132
DropScreen (class in asciimatics.particles), 132
duration (asciimatics.scene.Scene attribute), 147
DynamicPath (class in asciimatics.paths), 145

174 Index

asciimatics Documentation, Release 1.13.1

DynamicRenderer (class in asciimatics.renderers),
59

DynamicRenderer (class in asciimat-
ics.renderers.base), 45

E
Effect (class in asciimatics.effects), 117
effects (asciimatics.scene.Scene attribute), 147
enable() (asciimatics.widgets.layout.Layout method),

87
Event (class in asciimatics.event), 128
exit() (asciimatics.scene.Scene method), 147
Explosion (class in asciimatics.particles), 133
ExplosionFlames (class in asciimatics.particles),

134

F
fields (asciimatics.exceptions.InvalidFields attribute),

129
FigletText (class in asciimatics.renderers), 62
FigletText (class in asciimatics.renderers.figlettext),

50
FileBrowser (class in asciimat-

ics.widgets.filebrowser), 79
FILL_COLUMN (asciimatics.widgets.widget.Widget at-

tribute), 110
fill_frame (asciimatics.widgets.layout.Layout

attribute), 87
FILL_FRAME (asciimatics.widgets.widget.Widget

attribute), 110
fill_polygon() (asciimatics.screen.Canvas

method), 149
fill_polygon() (asciimatics.screen.Screen method),

153
fill_polygon() (asciimat-

ics.screen.TemporaryCanvas method), 158
find_widget() (asciimatics.widgets.frame.Frame

method), 82
find_widget() (asciimatics.widgets.layout.Layout

method), 87
find_widget() (asciimat-

ics.widgets.popupdialog.PopUpDialog
method), 95

find_widget() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
97

Fire (class in asciimatics.renderers), 63
Fire (class in asciimatics.renderers.fire), 51
first_colour (asciimatics.strings.ColouredText at-

tribute), 164
fit (asciimatics.widgets.dropdownlist.DropdownList at-

tribute), 77
fix() (asciimatics.widgets.frame.Frame method), 83
fix() (asciimatics.widgets.layout.Layout method), 87

fix() (asciimatics.widgets.popupdialog.PopUpDialog
method), 95

fix() (asciimatics.widgets.popupmenu.PopupMenu
method), 98

focus() (asciimatics.widgets.button.Button method),
69

focus() (asciimatics.widgets.checkbox.CheckBox
method), 72

focus() (asciimatics.widgets.datepicker.DatePicker
method), 73

focus() (asciimatics.widgets.divider.Divider method),
75

focus() (asciimatics.widgets.dropdownlist.DropdownList
method), 78

focus() (asciimatics.widgets.filebrowser.FileBrowser
method), 80

focus() (asciimatics.widgets.label.Label method), 85
focus() (asciimatics.widgets.layout.Layout method),

88
focus() (asciimatics.widgets.listbox.ListBox method),

89
focus() (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

method), 92
focus() (asciimatics.widgets.radiobuttons.RadioButtons

method), 100
focus() (asciimatics.widgets.text.Text method), 102
focus() (asciimatics.widgets.textbox.TextBox method),

104
focus() (asciimatics.widgets.timepicker.TimePicker

method), 106
focus() (asciimatics.widgets.verticaldivider.VerticalDivider

method), 108
focus() (asciimatics.widgets.widget.Widget method),

110
focussed_widget (asciimatics.widgets.frame.Frame

attribute), 83
focussed_widget (asciimat-

ics.widgets.popupdialog.PopUpDialog at-
tribute), 95

focussed_widget (asciimat-
ics.widgets.popupmenu.PopupMenu attribute),
98

force_update() (asciimatics.screen.Screen method),
153

frame (asciimatics.widgets.button.Button attribute), 69
frame (asciimatics.widgets.checkbox.CheckBox at-

tribute), 72
frame (asciimatics.widgets.datepicker.DatePicker at-

tribute), 74
frame (asciimatics.widgets.divider.Divider attribute),

75
frame (asciimatics.widgets.dropdownlist.DropdownList

attribute), 78
frame (asciimatics.widgets.filebrowser.FileBrowser at-

Index 175

asciimatics Documentation, Release 1.13.1

tribute), 80
frame (asciimatics.widgets.label.Label attribute), 85
frame (asciimatics.widgets.listbox.ListBox attribute), 90
frame (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

attribute), 92
frame (asciimatics.widgets.radiobuttons.RadioButtons

attribute), 100
frame (asciimatics.widgets.text.Text attribute), 102
frame (asciimatics.widgets.textbox.TextBox attribute),

104
frame (asciimatics.widgets.timepicker.TimePicker at-

tribute), 106
frame (asciimatics.widgets.verticaldivider.VerticalDivider

attribute), 108
frame (asciimatics.widgets.widget.Widget attribute),

111
Frame (class in asciimatics.widgets.frame), 81
frame_update_count (asciimat-

ics.effects.Background attribute), 113
frame_update_count (asciimat-

ics.effects.BannerText attribute), 114
frame_update_count (asciimatics.effects.Clock at-

tribute), 115
frame_update_count (asciimatics.effects.Cog at-

tribute), 116
frame_update_count (asciimatics.effects.Cycle at-

tribute), 117
frame_update_count (asciimatics.effects.Effect at-

tribute), 118
frame_update_count (asciimatics.effects.Julia at-

tribute), 119
frame_update_count (asciimatics.effects.Matrix at-

tribute), 120
frame_update_count (asciimatics.effects.Mirage

attribute), 121
frame_update_count (asciimatics.effects.Print at-

tribute), 122
frame_update_count (asciimat-

ics.effects.RandomNoise attribute), 123
frame_update_count (asciimatics.effects.Scroll at-

tribute), 124
frame_update_count (asciimatics.effects.Snow at-

tribute), 124
frame_update_count (asciimatics.effects.Sprite at-

tribute), 125
frame_update_count (asciimatics.effects.Stars at-

tribute), 127
frame_update_count (asciimatics.effects.Wipe at-

tribute), 127
frame_update_count (asciimat-

ics.particles.DropScreen attribute), 133
frame_update_count (asciimat-

ics.particles.Explosion attribute), 134
frame_update_count (asciimat-

ics.particles.PalmFirework attribute), 135
frame_update_count (asciimat-

ics.particles.ParticleEffect attribute), 137
frame_update_count (asciimatics.particles.Rain

attribute), 138
frame_update_count (asciimat-

ics.particles.RingFirework attribute), 140
frame_update_count (asciimat-

ics.particles.SerpentFirework attribute),
141

frame_update_count (asciimat-
ics.particles.ShootScreen attribute), 142

frame_update_count (asciimat-
ics.particles.StarFirework attribute), 144

frame_update_count (asciimatics.sprites.Arrow at-
tribute), 160

frame_update_count (asciimatics.sprites.Plot at-
tribute), 162

frame_update_count (asciimatics.sprites.Sam at-
tribute), 163

frame_update_count (asciimat-
ics.widgets.button.Button attribute), 70

frame_update_count (asciimat-
ics.widgets.checkbox.CheckBox attribute),
72

frame_update_count (asciimat-
ics.widgets.datepicker.DatePicker attribute),
74

frame_update_count (asciimat-
ics.widgets.divider.Divider attribute), 75

frame_update_count (asciimat-
ics.widgets.dropdownlist.DropdownList at-
tribute), 78

frame_update_count (asciimat-
ics.widgets.filebrowser.FileBrowser attribute),
80

frame_update_count (asciimat-
ics.widgets.frame.Frame attribute), 83

frame_update_count (asciimat-
ics.widgets.label.Label attribute), 85

frame_update_count (asciimat-
ics.widgets.layout.Layout attribute), 88

frame_update_count (asciimat-
ics.widgets.listbox.ListBox attribute), 90

frame_update_count (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
attribute), 92

frame_update_count (asciimat-
ics.widgets.popupdialog.PopUpDialog at-
tribute), 95

frame_update_count (asciimat-
ics.widgets.popupmenu.PopupMenu attribute),
98

frame_update_count (asciimat-

176 Index

asciimatics Documentation, Release 1.13.1

ics.widgets.radiobuttons.RadioButtons at-
tribute), 100

frame_update_count (asciimatics.widgets.text.Text
attribute), 102

frame_update_count (asciimat-
ics.widgets.textbox.TextBox attribute), 104

frame_update_count (asciimat-
ics.widgets.timepicker.TimePicker attribute),
106

frame_update_count (asciimat-
ics.widgets.verticaldivider.VerticalDivider
attribute), 108

frame_update_count (asciimat-
ics.widgets.widget.Widget attribute), 111

G
get_current_widget() (asciimat-

ics.widgets.layout.Layout method), 88
get_event() (asciimatics.screen.Screen method), 153
get_from() (asciimatics.screen.Canvas method), 149
get_from() (asciimatics.screen.Screen method), 153
get_from() (asciimatics.screen.TemporaryCanvas

method), 158
get_key() (asciimatics.screen.Screen method), 153
get_location() (asciimatics.widgets.button.Button

method), 70
get_location() (asciimat-

ics.widgets.checkbox.CheckBox method),
72

get_location() (asciimat-
ics.widgets.datepicker.DatePicker method),
74

get_location() (asciimat-
ics.widgets.divider.Divider method), 76

get_location() (asciimat-
ics.widgets.dropdownlist.DropdownList
method), 78

get_location() (asciimat-
ics.widgets.filebrowser.FileBrowser method),
80

get_location() (asciimatics.widgets.label.Label
method), 85

get_location() (asciimatics.widgets.listbox.ListBox
method), 90

get_location() (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
method), 92

get_location() (asciimat-
ics.widgets.radiobuttons.RadioButtons
method), 100

get_location() (asciimatics.widgets.text.Text
method), 102

get_location() (asciimat-
ics.widgets.textbox.TextBox method), 104

get_location() (asciimat-
ics.widgets.timepicker.TimePicker method),
106

get_location() (asciimat-
ics.widgets.verticaldivider.VerticalDivider
method), 108

get_location() (asciimatics.widgets.widget.Widget
method), 111

get_nearest_widget() (asciimat-
ics.widgets.layout.Layout method), 88

get_scroll_pos() (asciimat-
ics.widgets.frame.Frame method), 83

get_scroll_pos() (asciimat-
ics.widgets.popupdialog.PopUpDialog
method), 95

get_scroll_pos() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
98

getch() (asciimatics.screen.Screen method), 153

H
has_resized() (asciimatics.screen.Screen method),

154
hide_cursor (asciimatics.widgets.textbox.TextBox at-

tribute), 104
Highlander, 129
highlight() (asciimatics.screen.Canvas method),

149
highlight() (asciimatics.screen.Screen method), 154
highlight() (asciimatics.screen.TemporaryCanvas

method), 159

I
ImageFile (class in asciimatics.renderers), 63
ImageFile (class in asciimatics.renderers.images), 52
images (asciimatics.renderers.AbstractScreenPlayer at-

tribute), 64
images (asciimatics.renderers.AnsiArtPlayer attribute),

65
images (asciimatics.renderers.AsciinemaPlayer at-

tribute), 65
images (asciimatics.renderers.BarChart attribute), 61
images (asciimatics.renderers.base.DynamicRenderer

attribute), 45
images (asciimatics.renderers.base.Renderer attribute),

46
images (asciimatics.renderers.base.StaticRenderer at-

tribute), 46
images (asciimatics.renderers.Box attribute), 59
images (asciimatics.renderers.box.Box attribute), 47
images (asciimatics.renderers.charts.BarChart at-

tribute), 48
images (asciimatics.renderers.charts.VBarChart

attribute), 50

Index 177

asciimatics Documentation, Release 1.13.1

images (asciimatics.renderers.ColourImageFile at-
tribute), 64

images (asciimatics.renderers.DynamicRenderer
attribute), 59

images (asciimatics.renderers.FigletText attribute), 62
images (asciimatics.renderers.figlettext.FigletText at-

tribute), 50
images (asciimatics.renderers.Fire attribute), 63
images (asciimatics.renderers.fire.Fire attribute), 51
images (asciimatics.renderers.ImageFile attribute), 63
images (asciimatics.renderers.images.ColourImageFile

attribute), 52
images (asciimatics.renderers.images.ImageFile

attribute), 52
images (asciimatics.renderers.Kaleidoscope attribute),

66
images (asciimatics.renderers.kaleidoscope.Kaleidoscope

attribute), 53
images (asciimatics.renderers.Plasma attribute), 67
images (asciimatics.renderers.plasma.Plasma at-

tribute), 54
images (asciimatics.renderers.players.AbstractScreenPlayer

attribute), 54
images (asciimatics.renderers.players.AnsiArtPlayer

attribute), 55
images (asciimatics.renderers.players.AsciinemaPlayer

attribute), 55
images (asciimatics.renderers.Rainbow attribute), 67
images (asciimatics.renderers.rainbow.Rainbow at-

tribute), 56
images (asciimatics.renderers.Renderer attribute), 58
images (asciimatics.renderers.RotatedDuplicate at-

tribute), 67
images (asciimatics.renderers.rotatedduplicate.RotatedDuplicate

attribute), 56
images (asciimatics.renderers.Scale attribute), 68
images (asciimatics.renderers.scales.Scale attribute),

57
images (asciimatics.renderers.scales.VScale attribute),

57
images (asciimatics.renderers.SpeechBubble attribute),

68
images (asciimatics.renderers.speechbubble.SpeechBubble

attribute), 57
images (asciimatics.renderers.StaticRenderer at-

tribute), 58
images (asciimatics.renderers.VBarChart attribute), 62
images (asciimatics.renderers.VScale attribute), 68
InvalidFields, 129
is_finished() (asciimatics.paths.DynamicPath

method), 145
is_finished() (asciimatics.paths.Path method), 145
is_mouse_over() (asciimat-

ics.widgets.button.Button method), 70

is_mouse_over() (asciimat-
ics.widgets.checkbox.CheckBox method),
72

is_mouse_over() (asciimat-
ics.widgets.datepicker.DatePicker method),
74

is_mouse_over() (asciimat-
ics.widgets.divider.Divider method), 76

is_mouse_over() (asciimat-
ics.widgets.dropdownlist.DropdownList
method), 78

is_mouse_over() (asciimat-
ics.widgets.filebrowser.FileBrowser method),
80

is_mouse_over() (asciimatics.widgets.label.Label
method), 85

is_mouse_over() (asciimat-
ics.widgets.listbox.ListBox method), 90

is_mouse_over() (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
method), 93

is_mouse_over() (asciimat-
ics.widgets.radiobuttons.RadioButtons
method), 100

is_mouse_over() (asciimatics.widgets.text.Text
method), 102

is_mouse_over() (asciimat-
ics.widgets.textbox.TextBox method), 105

is_mouse_over() (asciimat-
ics.widgets.timepicker.TimePicker method),
107

is_mouse_over() (asciimat-
ics.widgets.verticaldivider.VerticalDivider
method), 109

is_mouse_over() (asciimat-
ics.widgets.widget.Widget method), 111

is_tab_stop (asciimatics.widgets.button.Button at-
tribute), 70

is_tab_stop (asciimat-
ics.widgets.checkbox.CheckBox attribute),
72

is_tab_stop (asciimat-
ics.widgets.datepicker.DatePicker attribute),
74

is_tab_stop (asciimatics.widgets.divider.Divider at-
tribute), 76

is_tab_stop (asciimat-
ics.widgets.dropdownlist.DropdownList at-
tribute), 78

is_tab_stop (asciimat-
ics.widgets.filebrowser.FileBrowser attribute),
80

is_tab_stop (asciimatics.widgets.label.Label at-
tribute), 85

178 Index

asciimatics Documentation, Release 1.13.1

is_tab_stop (asciimatics.widgets.listbox.ListBox at-
tribute), 90

is_tab_stop (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
attribute), 93

is_tab_stop (asciimat-
ics.widgets.radiobuttons.RadioButtons at-
tribute), 100

is_tab_stop (asciimatics.widgets.text.Text attribute),
102

is_tab_stop (asciimatics.widgets.textbox.TextBox at-
tribute), 105

is_tab_stop (asciimat-
ics.widgets.timepicker.TimePicker attribute),
107

is_tab_stop (asciimat-
ics.widgets.verticaldivider.VerticalDivider
attribute), 109

is_tab_stop (asciimatics.widgets.widget.Widget at-
tribute), 111

is_valid (asciimatics.widgets.button.Button at-
tribute), 70

is_valid (asciimatics.widgets.checkbox.CheckBox at-
tribute), 72

is_valid (asciimatics.widgets.datepicker.DatePicker
attribute), 74

is_valid (asciimatics.widgets.divider.Divider at-
tribute), 76

is_valid (asciimatics.widgets.dropdownlist.DropdownList
attribute), 78

is_valid (asciimatics.widgets.filebrowser.FileBrowser
attribute), 80

is_valid (asciimatics.widgets.label.Label attribute),
85

is_valid (asciimatics.widgets.listbox.ListBox at-
tribute), 90

is_valid (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox
attribute), 93

is_valid (asciimatics.widgets.radiobuttons.RadioButtons
attribute), 100

is_valid (asciimatics.widgets.text.Text attribute), 102
is_valid (asciimatics.widgets.textbox.TextBox at-

tribute), 105
is_valid (asciimatics.widgets.timepicker.TimePicker

attribute), 107
is_valid (asciimatics.widgets.verticaldivider.VerticalDivider

attribute), 109
is_valid (asciimatics.widgets.widget.Widget at-

tribute), 111
is_visible (asciimatics.widgets.button.Button

attribute), 70
is_visible (asciimatics.widgets.checkbox.CheckBox

attribute), 72
is_visible (asciimat-

ics.widgets.datepicker.DatePicker attribute),
74

is_visible (asciimatics.widgets.divider.Divider at-
tribute), 76

is_visible (asciimat-
ics.widgets.dropdownlist.DropdownList at-
tribute), 78

is_visible (asciimat-
ics.widgets.filebrowser.FileBrowser attribute),
80

is_visible (asciimatics.widgets.label.Label at-
tribute), 85

is_visible (asciimatics.widgets.listbox.ListBox at-
tribute), 90

is_visible (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
attribute), 93

is_visible (asciimat-
ics.widgets.radiobuttons.RadioButtons at-
tribute), 100

is_visible (asciimatics.widgets.text.Text attribute),
102

is_visible (asciimatics.widgets.textbox.TextBox at-
tribute), 105

is_visible (asciimat-
ics.widgets.timepicker.TimePicker attribute),
107

is_visible (asciimat-
ics.widgets.verticaldivider.VerticalDivider
attribute), 109

is_visible (asciimatics.widgets.widget.Widget
attribute), 111

is_visible() (asciimatics.screen.Canvas method),
149

is_visible() (asciimatics.screen.Screen method),
154

is_visible() (asciimatics.screen.TemporaryCanvas
method), 159

J
join() (asciimatics.strings.ColouredText method), 164
Julia (class in asciimatics.effects), 118
jump_to() (asciimatics.paths.Path method), 145

K
Kaleidoscope (class in asciimatics.renderers), 66
Kaleidoscope (class in asciimat-

ics.renderers.kaleidoscope), 53
KeyboardEvent (class in asciimatics.event), 128

L
label (asciimatics.widgets.button.Button attribute), 70
label (asciimatics.widgets.checkbox.CheckBox at-

tribute), 72

Index 179

asciimatics Documentation, Release 1.13.1

label (asciimatics.widgets.datepicker.DatePicker at-
tribute), 74

label (asciimatics.widgets.divider.Divider attribute),
76

label (asciimatics.widgets.dropdownlist.DropdownList
attribute), 78

label (asciimatics.widgets.filebrowser.FileBrowser at-
tribute), 80

label (asciimatics.widgets.label.Label attribute), 85
label (asciimatics.widgets.listbox.ListBox attribute), 90
label (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

attribute), 93
label (asciimatics.widgets.radiobuttons.RadioButtons

attribute), 100
label (asciimatics.widgets.text.Text attribute), 103
label (asciimatics.widgets.textbox.TextBox attribute),

105
label (asciimatics.widgets.timepicker.TimePicker at-

tribute), 107
label (asciimatics.widgets.verticaldivider.VerticalDivider

attribute), 109
label (asciimatics.widgets.widget.Widget attribute),

111
Label (class in asciimatics.widgets.label), 84
last() (asciimatics.particles.Particle method), 136
last_colour (asciimatics.strings.ColouredText

attribute), 164
last_position() (asciimatics.effects.Sprite

method), 126
last_position() (asciimatics.sprites.Arrow

method), 161
last_position() (asciimatics.sprites.Plot method),

162
last_position() (asciimatics.sprites.Sam method),

163
Layout (class in asciimatics.widgets.layout), 86
ListBox (class in asciimatics.widgets.listbox), 89

M
ManagedScreen (class in asciimatics.screen), 151
MAPPING_ATTRIBUTES (in module asciimat-

ics.constants), 112
Matrix (class in asciimatics.effects), 119
max_height (asciimat-

ics.renderers.AbstractScreenPlayer attribute),
64

max_height (asciimatics.renderers.AnsiArtPlayer at-
tribute), 65

max_height (asciimatics.renderers.AsciinemaPlayer
attribute), 66

max_height (asciimatics.renderers.BarChart at-
tribute), 61

max_height (asciimat-
ics.renderers.base.DynamicRenderer attribute),

45
max_height (asciimatics.renderers.base.Renderer at-

tribute), 46
max_height (asciimat-

ics.renderers.base.StaticRenderer attribute),
46

max_height (asciimatics.renderers.Box attribute), 59
max_height (asciimatics.renderers.box.Box attribute),

47
max_height (asciimatics.renderers.charts.BarChart

attribute), 48
max_height (asciimatics.renderers.charts.VBarChart

attribute), 50
max_height (asciimatics.renderers.ColourImageFile

attribute), 64
max_height (asciimatics.renderers.DynamicRenderer

attribute), 59
max_height (asciimatics.renderers.FigletText at-

tribute), 62
max_height (asciimatics.renderers.figlettext.FigletText

attribute), 50
max_height (asciimatics.renderers.Fire attribute), 63
max_height (asciimatics.renderers.fire.Fire attribute),

51
max_height (asciimatics.renderers.ImageFile at-

tribute), 63
max_height (asciimat-

ics.renderers.images.ColourImageFile at-
tribute), 52

max_height (asciimatics.renderers.images.ImageFile
attribute), 52

max_height (asciimatics.renderers.Kaleidoscope at-
tribute), 66

max_height (asciimat-
ics.renderers.kaleidoscope.Kaleidoscope
attribute), 53

max_height (asciimatics.renderers.Plasma attribute),
67

max_height (asciimatics.renderers.plasma.Plasma at-
tribute), 54

max_height (asciimat-
ics.renderers.players.AbstractScreenPlayer
attribute), 54

max_height (asciimat-
ics.renderers.players.AnsiArtPlayer attribute),
55

max_height (asciimat-
ics.renderers.players.AsciinemaPlayer at-
tribute), 55

max_height (asciimatics.renderers.Rainbow at-
tribute), 67

max_height (asciimatics.renderers.rainbow.Rainbow
attribute), 56

max_height (asciimatics.renderers.Renderer at-

180 Index

asciimatics Documentation, Release 1.13.1

tribute), 58
max_height (asciimatics.renderers.RotatedDuplicate

attribute), 67
max_height (asciimat-

ics.renderers.rotatedduplicate.RotatedDuplicate
attribute), 56

max_height (asciimatics.renderers.Scale attribute), 68
max_height (asciimatics.renderers.scales.Scale

attribute), 57
max_height (asciimatics.renderers.scales.VScale at-

tribute), 57
max_height (asciimatics.renderers.SpeechBubble at-

tribute), 69
max_height (asciimat-

ics.renderers.speechbubble.SpeechBubble
attribute), 57

max_height (asciimatics.renderers.StaticRenderer at-
tribute), 58

max_height (asciimatics.renderers.VBarChart at-
tribute), 62

max_height (asciimatics.renderers.VScale attribute),
68

max_width (asciimat-
ics.renderers.AbstractScreenPlayer attribute),
65

max_width (asciimatics.renderers.AnsiArtPlayer at-
tribute), 65

max_width (asciimatics.renderers.AsciinemaPlayer at-
tribute), 66

max_width (asciimatics.renderers.BarChart attribute),
61

max_width (asciimat-
ics.renderers.base.DynamicRenderer attribute),
45

max_width (asciimatics.renderers.base.Renderer at-
tribute), 46

max_width (asciimatics.renderers.base.StaticRenderer
attribute), 46

max_width (asciimatics.renderers.Box attribute), 59
max_width (asciimatics.renderers.box.Box attribute),

47
max_width (asciimatics.renderers.charts.BarChart at-

tribute), 48
max_width (asciimatics.renderers.charts.VBarChart

attribute), 50
max_width (asciimatics.renderers.ColourImageFile at-

tribute), 64
max_width (asciimatics.renderers.DynamicRenderer

attribute), 59
max_width (asciimatics.renderers.FigletText attribute),

62
max_width (asciimatics.renderers.figlettext.FigletText

attribute), 50
max_width (asciimatics.renderers.Fire attribute), 63

max_width (asciimatics.renderers.fire.Fire attribute),
51

max_width (asciimatics.renderers.ImageFile attribute),
63

max_width (asciimat-
ics.renderers.images.ColourImageFile at-
tribute), 52

max_width (asciimatics.renderers.images.ImageFile
attribute), 52

max_width (asciimatics.renderers.Kaleidoscope
attribute), 66

max_width (asciimat-
ics.renderers.kaleidoscope.Kaleidoscope
attribute), 53

max_width (asciimatics.renderers.Plasma attribute),
67

max_width (asciimatics.renderers.plasma.Plasma at-
tribute), 54

max_width (asciimat-
ics.renderers.players.AbstractScreenPlayer
attribute), 54

max_width (asciimat-
ics.renderers.players.AnsiArtPlayer attribute),
55

max_width (asciimat-
ics.renderers.players.AsciinemaPlayer at-
tribute), 55

max_width (asciimatics.renderers.Rainbow attribute),
67

max_width (asciimatics.renderers.rainbow.Rainbow
attribute), 56

max_width (asciimatics.renderers.Renderer attribute),
58

max_width (asciimatics.renderers.RotatedDuplicate
attribute), 67

max_width (asciimat-
ics.renderers.rotatedduplicate.RotatedDuplicate
attribute), 56

max_width (asciimatics.renderers.Scale attribute), 68
max_width (asciimatics.renderers.scales.Scale at-

tribute), 57
max_width (asciimatics.renderers.scales.VScale

attribute), 57
max_width (asciimatics.renderers.SpeechBubble at-

tribute), 69
max_width (asciimat-

ics.renderers.speechbubble.SpeechBubble
attribute), 57

max_width (asciimatics.renderers.StaticRenderer at-
tribute), 58

max_width (asciimatics.renderers.VBarChart at-
tribute), 62

max_width (asciimatics.renderers.VScale attribute), 68
Mirage (class in asciimatics.effects), 120

Index 181

asciimatics Documentation, Release 1.13.1

MouseEvent (class in asciimatics.event), 129
move() (asciimatics.screen.Canvas method), 149
move() (asciimatics.screen.Screen method), 154
move() (asciimatics.screen.TemporaryCanvas method),

159
MOVE_ABSOLUTE (asciimatics.parsers.Parser at-

tribute), 132
MOVE_RELATIVE (asciimatics.parsers.Parser at-

tribute), 132
move_round_to() (asciimatics.paths.Path method),

145
move_straight_to() (asciimatics.paths.Path

method), 146
move_to() (asciimatics.widgets.frame.Frame method),

83
move_to() (asciimat-

ics.widgets.popupdialog.PopUpDialog
method), 95

move_to() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
98

MultiColumnListBox (class in asciimat-
ics.widgets.multicolumnlistbox), 91

N
name (asciimatics.exceptions.NextScene attribute), 129
name (asciimatics.scene.Scene attribute), 147
name (asciimatics.widgets.button.Button attribute), 70
name (asciimatics.widgets.checkbox.CheckBox at-

tribute), 72
name (asciimatics.widgets.datepicker.DatePicker at-

tribute), 74
name (asciimatics.widgets.divider.Divider attribute), 76
name (asciimatics.widgets.dropdownlist.DropdownList

attribute), 78
name (asciimatics.widgets.filebrowser.FileBrowser at-

tribute), 80
name (asciimatics.widgets.label.Label attribute), 85
name (asciimatics.widgets.listbox.ListBox attribute), 90
name (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

attribute), 93
name (asciimatics.widgets.radiobuttons.RadioButtons

attribute), 100
name (asciimatics.widgets.text.Text attribute), 103
name (asciimatics.widgets.textbox.TextBox attribute),

105
name (asciimatics.widgets.timepicker.TimePicker at-

tribute), 107
name (asciimatics.widgets.verticaldivider.VerticalDivider

attribute), 109
name (asciimatics.widgets.widget.Widget attribute), 111
next() (asciimatics.particles.Particle method), 136
next_pos() (asciimatics.paths.DynamicPath method),

145

next_pos() (asciimatics.paths.Path method), 146
NEXT_TAB (asciimatics.parsers.Parser attribute), 132
NextScene, 129

O
open() (asciimatics.screen.Screen class method), 154
options (asciimatics.widgets.dropdownlist.DropdownList

attribute), 78
options (asciimatics.widgets.filebrowser.FileBrowser

attribute), 80
options (asciimatics.widgets.listbox.ListBox attribute),

90
options (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

attribute), 93
origin (asciimatics.screen.Canvas attribute), 150
overlaps() (asciimatics.effects.Sprite method), 126
overlaps() (asciimatics.sprites.Arrow method), 161
overlaps() (asciimatics.sprites.Plot method), 162
overlaps() (asciimatics.sprites.Sam method), 163

P
paint() (asciimatics.screen.Canvas method), 150
paint() (asciimatics.screen.Screen method), 154
paint() (asciimatics.screen.TemporaryCanvas

method), 159
palette (asciimatics.screen.Canvas attribute), 150
palette (asciimatics.screen.Screen attribute), 155
palette (asciimatics.screen.TemporaryCanvas at-

tribute), 159
palette (asciimatics.widgets.frame.Frame attribute),

83
PalmExplosion (class in asciimatics.particles), 135
PalmFirework (class in asciimatics.particles), 135
parse() (asciimatics.parsers.AnsiTerminalParser

method), 130
parse() (asciimatics.parsers.AsciimaticsParser

method), 131
parse() (asciimatics.parsers.ControlCodeParser

method), 131
parse() (asciimatics.parsers.Parser method), 132
Parser (class in asciimatics.parsers), 131
Particle (class in asciimatics.particles), 136
ParticleEffect (class in asciimatics.particles), 137
ParticleEmitter (class in asciimatics.particles),

138
Path (class in asciimatics.paths), 145
Plasma (class in asciimatics.renderers), 66
Plasma (class in asciimatics.renderers.plasma), 53
play() (asciimatics.screen.Screen method), 155
Plot (class in asciimatics.sprites), 161
PopUpDialog (class in asciimat-

ics.widgets.popupdialog), 94
PopupMenu (class in asciimatics.widgets.popupmenu),

97

182 Index

asciimatics Documentation, Release 1.13.1

Print (class in asciimatics.effects), 121
print_at() (asciimatics.screen.Canvas method), 150
print_at() (asciimatics.screen.Screen method), 155
print_at() (asciimatics.screen.TemporaryCanvas

method), 160
process_event() (asciimatics.effects.Background

method), 113
process_event() (asciimatics.effects.BannerText

method), 114
process_event() (asciimatics.effects.Clock

method), 115
process_event() (asciimatics.effects.Cog method),

116
process_event() (asciimatics.effects.Cycle

method), 117
process_event() (asciimatics.effects.Effect

method), 118
process_event() (asciimatics.effects.Julia method),

119
process_event() (asciimatics.effects.Matrix

method), 120
process_event() (asciimatics.effects.Mirage

method), 121
process_event() (asciimatics.effects.Print method),

122
process_event() (asciimatics.effects.RandomNoise

method), 123
process_event() (asciimatics.effects.Scroll

method), 124
process_event() (asciimatics.effects.Snow method),

125
process_event() (asciimatics.effects.Sprite

method), 126
process_event() (asciimatics.effects.Stars method),

127
process_event() (asciimatics.effects.Wipe method),

128
process_event() (asciimatics.particles.DropScreen

method), 133
process_event() (asciimatics.particles.Explosion

method), 134
process_event() (asciimat-

ics.particles.PalmFirework method), 135
process_event() (asciimat-

ics.particles.ParticleEffect method), 137
process_event() (asciimatics.particles.Rain

method), 138
process_event() (asciimat-

ics.particles.RingFirework method), 140
process_event() (asciimat-

ics.particles.SerpentFirework method), 141
process_event() (asciimatics.particles.ShootScreen

method), 142
process_event() (asciimat-

ics.particles.StarFirework method), 144
process_event() (asciimatics.paths.DynamicPath

method), 145
process_event() (asciimatics.scene.Scene method),

147
process_event() (asciimatics.sprites.Arrow

method), 161
process_event() (asciimatics.sprites.Plot method),

162
process_event() (asciimatics.sprites.Sam method),

163
process_event() (asciimat-

ics.widgets.button.Button method), 70
process_event() (asciimat-

ics.widgets.checkbox.CheckBox method),
72

process_event() (asciimat-
ics.widgets.datepicker.DatePicker method),
74

process_event() (asciimat-
ics.widgets.divider.Divider method), 76

process_event() (asciimat-
ics.widgets.dropdownlist.DropdownList
method), 78

process_event() (asciimat-
ics.widgets.filebrowser.FileBrowser method),
80

process_event() (asciimatics.widgets.frame.Frame
method), 83

process_event() (asciimatics.widgets.label.Label
method), 85

process_event() (asciimat-
ics.widgets.layout.Layout method), 88

process_event() (asciimat-
ics.widgets.listbox.ListBox method), 90

process_event() (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
method), 93

process_event() (asciimat-
ics.widgets.popupdialog.PopUpDialog
method), 95

process_event() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
98

process_event() (asciimat-
ics.widgets.radiobuttons.RadioButtons
method), 100

process_event() (asciimatics.widgets.text.Text
method), 103

process_event() (asciimat-
ics.widgets.textbox.TextBox method), 105

process_event() (asciimat-
ics.widgets.timepicker.TimePicker method),
107

Index 183

asciimatics Documentation, Release 1.13.1

process_event() (asciimat-
ics.widgets.verticaldivider.VerticalDivider
method), 109

process_event() (asciimat-
ics.widgets.widget.Widget method), 111

putch() (asciimatics.screen.Screen method), 156

R
RadioButtons (class in asciimat-

ics.widgets.radiobuttons), 99
Rain (class in asciimatics.particles), 138
Rainbow (class in asciimatics.renderers), 67
Rainbow (class in asciimatics.renderers.rainbow), 55
RainSource (class in asciimatics.particles), 139
random() (in module asciimatics.effects), 128
random() (in module asciimatics.renderers.fire), 51
RandomNoise (class in asciimatics.effects), 122
raw_text (asciimatics.strings.ColouredText attribute),

164
readable_mem() (in module asciimatics.utilities),

165
readable_timestamp() (in module asciimat-

ics.utilities), 165
readonly (asciimatics.widgets.text.Text attribute), 103
readonly (asciimatics.widgets.textbox.TextBox at-

tribute), 105
rebase_event() (asciimatics.widgets.frame.Frame

method), 83
rebase_event() (asciimat-

ics.widgets.popupdialog.PopUpDialog
method), 96

rebase_event() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
98

reduce_cpu (asciimatics.widgets.frame.Frame at-
tribute), 83

reduce_cpu (asciimat-
ics.widgets.popupdialog.PopUpDialog at-
tribute), 96

reduce_cpu (asciimat-
ics.widgets.popupmenu.PopupMenu attribute),
98

refresh() (asciimatics.screen.Canvas method), 150
refresh() (asciimatics.screen.Screen method), 156
refresh() (asciimatics.screen.TemporaryCanvas

method), 160
register_frame() (asciimat-

ics.widgets.button.Button method), 70
register_frame() (asciimat-

ics.widgets.checkbox.CheckBox method),
72

register_frame() (asciimat-
ics.widgets.datepicker.DatePicker method),
74

register_frame() (asciimat-
ics.widgets.divider.Divider method), 76

register_frame() (asciimat-
ics.widgets.dropdownlist.DropdownList
method), 78

register_frame() (asciimat-
ics.widgets.filebrowser.FileBrowser method),
80

register_frame() (asciimatics.widgets.label.Label
method), 85

register_frame() (asciimat-
ics.widgets.layout.Layout method), 88

register_frame() (asciimat-
ics.widgets.listbox.ListBox method), 90

register_frame() (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
method), 93

register_frame() (asciimat-
ics.widgets.radiobuttons.RadioButtons
method), 100

register_frame() (asciimatics.widgets.text.Text
method), 103

register_frame() (asciimat-
ics.widgets.textbox.TextBox method), 105

register_frame() (asciimat-
ics.widgets.timepicker.TimePicker method),
107

register_frame() (asciimat-
ics.widgets.verticaldivider.VerticalDivider
method), 109

register_frame() (asciimat-
ics.widgets.widget.Widget method), 111

register_scene() (asciimatics.effects.Background
method), 113

register_scene() (asciimatics.effects.BannerText
method), 114

register_scene() (asciimatics.effects.Clock
method), 115

register_scene() (asciimatics.effects.Cog
method), 116

register_scene() (asciimatics.effects.Cycle
method), 117

register_scene() (asciimatics.effects.Effect
method), 118

register_scene() (asciimatics.effects.Julia
method), 119

register_scene() (asciimatics.effects.Matrix
method), 120

register_scene() (asciimatics.effects.Mirage
method), 121

register_scene() (asciimatics.effects.Print
method), 122

register_scene() (asciimat-
ics.effects.RandomNoise method), 123

184 Index

asciimatics Documentation, Release 1.13.1

register_scene() (asciimatics.effects.Scroll
method), 124

register_scene() (asciimatics.effects.Snow
method), 125

register_scene() (asciimatics.effects.Sprite
method), 126

register_scene() (asciimatics.effects.Stars
method), 127

register_scene() (asciimatics.effects.Wipe
method), 128

register_scene() (asciimat-
ics.particles.DropScreen method), 133

register_scene() (asciimatics.particles.Explosion
method), 134

register_scene() (asciimat-
ics.particles.PalmFirework method), 135

register_scene() (asciimat-
ics.particles.ParticleEffect method), 137

register_scene() (asciimatics.particles.Rain
method), 138

register_scene() (asciimat-
ics.particles.RingFirework method), 140

register_scene() (asciimat-
ics.particles.SerpentFirework method), 141

register_scene() (asciimat-
ics.particles.ShootScreen method), 142

register_scene() (asciimat-
ics.particles.StarFirework method), 144

register_scene() (asciimatics.sprites.Arrow
method), 161

register_scene() (asciimatics.sprites.Plot
method), 162

register_scene() (asciimatics.sprites.Sam
method), 163

register_scene() (asciimat-
ics.widgets.frame.Frame method), 83

register_scene() (asciimat-
ics.widgets.popupdialog.PopUpDialog
method), 96

register_scene() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
98

remove_effect() (asciimatics.scene.Scene method),
147

rendered_text (asciimat-
ics.renderers.AbstractScreenPlayer attribute),
65

rendered_text (asciimatics.renderers.AnsiArtPlayer
attribute), 65

rendered_text (asciimat-
ics.renderers.AsciinemaPlayer attribute),
66

rendered_text (asciimatics.renderers.BarChart at-
tribute), 61

rendered_text (asciimat-
ics.renderers.base.DynamicRenderer attribute),
46

rendered_text (asciimatics.renderers.base.Renderer
attribute), 46

rendered_text (asciimat-
ics.renderers.base.StaticRenderer attribute),
46

rendered_text (asciimatics.renderers.Box attribute),
59

rendered_text (asciimatics.renderers.box.Box at-
tribute), 47

rendered_text (asciimat-
ics.renderers.charts.BarChart attribute),
48

rendered_text (asciimat-
ics.renderers.charts.VBarChart attribute),
50

rendered_text (asciimat-
ics.renderers.ColourImageFile attribute),
64

rendered_text (asciimat-
ics.renderers.DynamicRenderer attribute),
59

rendered_text (asciimatics.renderers.FigletText at-
tribute), 63

rendered_text (asciimat-
ics.renderers.figlettext.FigletText attribute),
50

rendered_text (asciimatics.renderers.Fire attribute),
63

rendered_text (asciimatics.renderers.fire.Fire at-
tribute), 51

rendered_text (asciimatics.renderers.ImageFile at-
tribute), 64

rendered_text (asciimat-
ics.renderers.images.ColourImageFile at-
tribute), 52

rendered_text (asciimat-
ics.renderers.images.ImageFile attribute),
52

rendered_text (asciimatics.renderers.Kaleidoscope
attribute), 66

rendered_text (asciimat-
ics.renderers.kaleidoscope.Kaleidoscope
attribute), 53

rendered_text (asciimatics.renderers.Plasma
attribute), 67

rendered_text (asciimat-
ics.renderers.plasma.Plasma attribute), 54

rendered_text (asciimat-
ics.renderers.players.AbstractScreenPlayer
attribute), 54

rendered_text (asciimat-

Index 185

asciimatics Documentation, Release 1.13.1

ics.renderers.players.AnsiArtPlayer attribute),
55

rendered_text (asciimat-
ics.renderers.players.AsciinemaPlayer at-
tribute), 55

rendered_text (asciimatics.renderers.Rainbow at-
tribute), 67

rendered_text (asciimat-
ics.renderers.rainbow.Rainbow attribute),
56

rendered_text (asciimatics.renderers.Renderer at-
tribute), 58

rendered_text (asciimat-
ics.renderers.RotatedDuplicate attribute),
68

rendered_text (asciimat-
ics.renderers.rotatedduplicate.RotatedDuplicate
attribute), 56

rendered_text (asciimatics.renderers.Scale at-
tribute), 68

rendered_text (asciimatics.renderers.scales.Scale
attribute), 57

rendered_text (asciimatics.renderers.scales.VScale
attribute), 57

rendered_text (asciimatics.renderers.SpeechBubble
attribute), 69

rendered_text (asciimat-
ics.renderers.speechbubble.SpeechBubble
attribute), 58

rendered_text (asciimat-
ics.renderers.StaticRenderer attribute), 58

rendered_text (asciimatics.renderers.VBarChart at-
tribute), 62

rendered_text (asciimatics.renderers.VScale at-
tribute), 68

Renderer (class in asciimatics.renderers), 58
Renderer (class in asciimatics.renderers.base), 46
required_height() (asciimat-

ics.widgets.button.Button method), 70
required_height() (asciimat-

ics.widgets.checkbox.CheckBox method),
72

required_height() (asciimat-
ics.widgets.datepicker.DatePicker method),
74

required_height() (asciimat-
ics.widgets.divider.Divider method), 76

required_height() (asciimat-
ics.widgets.dropdownlist.DropdownList
method), 78

required_height() (asciimat-
ics.widgets.filebrowser.FileBrowser method),
81

required_height() (asciimat-

ics.widgets.label.Label method), 86
required_height() (asciimat-

ics.widgets.listbox.ListBox method), 90
required_height() (asciimat-

ics.widgets.multicolumnlistbox.MultiColumnListBox
method), 93

required_height() (asciimat-
ics.widgets.radiobuttons.RadioButtons
method), 100

required_height() (asciimatics.widgets.text.Text
method), 103

required_height() (asciimat-
ics.widgets.textbox.TextBox method), 105

required_height() (asciimat-
ics.widgets.timepicker.TimePicker method),
107

required_height() (asciimat-
ics.widgets.verticaldivider.VerticalDivider
method), 109

required_height() (asciimat-
ics.widgets.widget.Widget method), 111

reset() (asciimatics.effects.Background method), 113
reset() (asciimatics.effects.BannerText method), 114
reset() (asciimatics.effects.Clock method), 115
reset() (asciimatics.effects.Cog method), 116
reset() (asciimatics.effects.Cycle method), 117
reset() (asciimatics.effects.Effect method), 118
reset() (asciimatics.effects.Julia method), 119
reset() (asciimatics.effects.Matrix method), 120
reset() (asciimatics.effects.Mirage method), 121
reset() (asciimatics.effects.Print method), 122
reset() (asciimatics.effects.RandomNoise method),

123
reset() (asciimatics.effects.Scroll method), 124
reset() (asciimatics.effects.Snow method), 125
reset() (asciimatics.effects.Sprite method), 126
reset() (asciimatics.effects.Stars method), 127
reset() (asciimatics.effects.Wipe method), 128
reset() (asciimatics.parsers.AnsiTerminalParser

method), 130
reset() (asciimatics.parsers.AsciimaticsParser

method), 131
reset() (asciimatics.parsers.ControlCodeParser

method), 131
reset() (asciimatics.parsers.Parser method), 132
reset() (asciimatics.particles.DropScreen method),

133
reset() (asciimatics.particles.Explosion method), 134
reset() (asciimatics.particles.PalmFirework method),

135
reset() (asciimatics.particles.ParticleEffect method),

137
reset() (asciimatics.particles.Rain method), 138
reset() (asciimatics.particles.RingFirework method),

186 Index

asciimatics Documentation, Release 1.13.1

140
reset() (asciimatics.particles.SerpentFirework

method), 141
reset() (asciimatics.particles.ShootScreen method),

142
reset() (asciimatics.particles.StarFirework method),

144
reset() (asciimatics.paths.DynamicPath method), 145
reset() (asciimatics.paths.Path method), 146
reset() (asciimatics.scene.Scene method), 147
reset() (asciimatics.screen.Canvas method), 150
reset() (asciimatics.screen.Screen method), 156
reset() (asciimatics.screen.TemporaryCanvas

method), 160
reset() (asciimatics.sprites.Arrow method), 161
reset() (asciimatics.sprites.Plot method), 162
reset() (asciimatics.sprites.Sam method), 163
reset() (asciimatics.widgets.button.Button method),

70
reset() (asciimatics.widgets.checkbox.CheckBox

method), 72
reset() (asciimatics.widgets.datepicker.DatePicker

method), 74
reset() (asciimatics.widgets.divider.Divider method),

76
reset() (asciimatics.widgets.dropdownlist.DropdownList

method), 78
reset() (asciimatics.widgets.filebrowser.FileBrowser

method), 81
reset() (asciimatics.widgets.frame.Frame method), 83
reset() (asciimatics.widgets.label.Label method), 86
reset() (asciimatics.widgets.layout.Layout method),

88
reset() (asciimatics.widgets.listbox.ListBox method),

91
reset() (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

method), 93
reset() (asciimatics.widgets.popupdialog.PopUpDialog

method), 96
reset() (asciimatics.widgets.popupmenu.PopupMenu

method), 98
reset() (asciimatics.widgets.radiobuttons.RadioButtons

method), 101
reset() (asciimatics.widgets.text.Text method), 103
reset() (asciimatics.widgets.textbox.TextBox method),

105
reset() (asciimatics.widgets.timepicker.TimePicker

method), 107
reset() (asciimatics.widgets.verticaldivider.VerticalDivider

method), 109
reset() (asciimatics.widgets.widget.Widget method),

111
ResizeScreenError, 129
RESTORE_CURSOR (asciimatics.parsers.Parser at-

tribute), 132
RingExplosion (class in asciimatics.particles), 139
RingFirework (class in asciimatics.particles), 139
Rocket (class in asciimatics.particles), 140
RotatedDuplicate (class in asciimatics.renderers),

67
RotatedDuplicate (class in asciimat-

ics.renderers.rotatedduplicate), 56

S
safe_to_default_unhandled_input (asciimat-

ics.effects.Background attribute), 113
safe_to_default_unhandled_input (asciimat-

ics.effects.BannerText attribute), 114
safe_to_default_unhandled_input (asciimat-

ics.effects.Clock attribute), 115
safe_to_default_unhandled_input (asciimat-

ics.effects.Cog attribute), 116
safe_to_default_unhandled_input (asciimat-

ics.effects.Cycle attribute), 117
safe_to_default_unhandled_input (asciimat-

ics.effects.Effect attribute), 118
safe_to_default_unhandled_input (asciimat-

ics.effects.Julia attribute), 119
safe_to_default_unhandled_input (asciimat-

ics.effects.Matrix attribute), 120
safe_to_default_unhandled_input (asciimat-

ics.effects.Mirage attribute), 121
safe_to_default_unhandled_input (asciimat-

ics.effects.Print attribute), 122
safe_to_default_unhandled_input (asciimat-

ics.effects.RandomNoise attribute), 123
safe_to_default_unhandled_input (asciimat-

ics.effects.Scroll attribute), 124
safe_to_default_unhandled_input (asciimat-

ics.effects.Snow attribute), 125
safe_to_default_unhandled_input (asciimat-

ics.effects.Sprite attribute), 126
safe_to_default_unhandled_input (asciimat-

ics.effects.Stars attribute), 127
safe_to_default_unhandled_input (asciimat-

ics.effects.Wipe attribute), 128
safe_to_default_unhandled_input (asciimat-

ics.particles.DropScreen attribute), 133
safe_to_default_unhandled_input (asciimat-

ics.particles.Explosion attribute), 134
safe_to_default_unhandled_input (asciimat-

ics.particles.PalmFirework attribute), 135
safe_to_default_unhandled_input (asciimat-

ics.particles.ParticleEffect attribute), 137
safe_to_default_unhandled_input (asciimat-

ics.particles.Rain attribute), 139
safe_to_default_unhandled_input (asciimat-

ics.particles.RingFirework attribute), 140

Index 187

asciimatics Documentation, Release 1.13.1

safe_to_default_unhandled_input (asciimat-
ics.particles.SerpentFirework attribute), 141

safe_to_default_unhandled_input (asciimat-
ics.particles.ShootScreen attribute), 142

safe_to_default_unhandled_input (asciimat-
ics.particles.StarFirework attribute), 144

safe_to_default_unhandled_input (asciimat-
ics.sprites.Arrow attribute), 161

safe_to_default_unhandled_input (asciimat-
ics.sprites.Plot attribute), 162

safe_to_default_unhandled_input (asciimat-
ics.sprites.Sam attribute), 163

safe_to_default_unhandled_input (asciimat-
ics.widgets.frame.Frame attribute), 83

safe_to_default_unhandled_input (asci-
imatics.widgets.popupdialog.PopUpDialog
attribute), 96

safe_to_default_unhandled_input (asciimat-
ics.widgets.popupmenu.PopupMenu attribute),
98

Sam (class in asciimatics.sprites), 162
save() (asciimatics.widgets.frame.Frame method), 84
save() (asciimatics.widgets.layout.Layout method), 88
save() (asciimatics.widgets.popupdialog.PopUpDialog

method), 96
save() (asciimatics.widgets.popupmenu.PopupMenu

method), 98
SAVE_CURSOR (asciimatics.parsers.Parser attribute),

132
Scale (class in asciimatics.renderers), 68
Scale (class in asciimatics.renderers.scales), 56
scene (asciimatics.effects.Background attribute), 113
scene (asciimatics.effects.BannerText attribute), 114
scene (asciimatics.effects.Clock attribute), 115
scene (asciimatics.effects.Cog attribute), 116
scene (asciimatics.effects.Cycle attribute), 117
scene (asciimatics.effects.Effect attribute), 118
scene (asciimatics.effects.Julia attribute), 119
scene (asciimatics.effects.Matrix attribute), 120
scene (asciimatics.effects.Mirage attribute), 121
scene (asciimatics.effects.Print attribute), 122
scene (asciimatics.effects.RandomNoise attribute), 123
scene (asciimatics.effects.Scroll attribute), 124
scene (asciimatics.effects.Snow attribute), 125
scene (asciimatics.effects.Sprite attribute), 126
scene (asciimatics.effects.Stars attribute), 127
scene (asciimatics.effects.Wipe attribute), 128
scene (asciimatics.exceptions.ResizeScreenError

attribute), 130
scene (asciimatics.particles.DropScreen attribute), 133
scene (asciimatics.particles.Explosion attribute), 134
scene (asciimatics.particles.PalmFirework attribute),

136
scene (asciimatics.particles.ParticleEffect attribute),

137
scene (asciimatics.particles.Rain attribute), 139
scene (asciimatics.particles.RingFirework attribute),

140
scene (asciimatics.particles.SerpentFirework attribute),

142
scene (asciimatics.particles.ShootScreen attribute), 142
scene (asciimatics.particles.StarFirework attribute),

144
scene (asciimatics.sprites.Arrow attribute), 161
scene (asciimatics.sprites.Plot attribute), 162
scene (asciimatics.sprites.Sam attribute), 163
scene (asciimatics.widgets.frame.Frame attribute), 84
scene (asciimatics.widgets.popupdialog.PopUpDialog

attribute), 96
scene (asciimatics.widgets.popupmenu.PopupMenu at-

tribute), 99
Scene (class in asciimatics.scene), 146
screen (asciimatics.effects.Background attribute), 113
screen (asciimatics.effects.BannerText attribute), 114
screen (asciimatics.effects.Clock attribute), 115
screen (asciimatics.effects.Cog attribute), 116
screen (asciimatics.effects.Cycle attribute), 117
screen (asciimatics.effects.Effect attribute), 118
screen (asciimatics.effects.Julia attribute), 119
screen (asciimatics.effects.Matrix attribute), 120
screen (asciimatics.effects.Mirage attribute), 121
screen (asciimatics.effects.Print attribute), 122
screen (asciimatics.effects.RandomNoise attribute),

123
screen (asciimatics.effects.Scroll attribute), 124
screen (asciimatics.effects.Snow attribute), 125
screen (asciimatics.effects.Sprite attribute), 126
screen (asciimatics.effects.Stars attribute), 127
screen (asciimatics.effects.Wipe attribute), 128
screen (asciimatics.particles.DropScreen attribute),

133
screen (asciimatics.particles.Explosion attribute), 134
screen (asciimatics.particles.PalmFirework attribute),

136
screen (asciimatics.particles.ParticleEffect attribute),

137
screen (asciimatics.particles.Rain attribute), 139
screen (asciimatics.particles.RingFirework attribute),

140
screen (asciimatics.particles.SerpentFirework at-

tribute), 142
screen (asciimatics.particles.ShootScreen attribute),

142
screen (asciimatics.particles.StarFirework attribute),

144
screen (asciimatics.sprites.Arrow attribute), 161
screen (asciimatics.sprites.Plot attribute), 162
screen (asciimatics.sprites.Sam attribute), 163

188 Index

asciimatics Documentation, Release 1.13.1

screen (asciimatics.widgets.frame.Frame attribute), 84
screen (asciimatics.widgets.popupdialog.PopUpDialog

attribute), 96
screen (asciimatics.widgets.popupmenu.PopupMenu

attribute), 99
Screen (class in asciimatics.screen), 151
Scroll (class in asciimatics.effects), 123
scroll() (asciimatics.screen.Canvas method), 150
scroll() (asciimatics.screen.Screen method), 156
scroll() (asciimatics.screen.TemporaryCanvas

method), 160
scroll_to() (asciimatics.screen.Canvas method),

151
scroll_to() (asciimatics.screen.Screen method), 156
scroll_to() (asciimatics.screen.TemporaryCanvas

method), 160
SerpentExplosion (class in asciimatics.particles),

141
SerpentFirework (class in asciimatics.particles),

141
set_layout() (asciimatics.widgets.button.Button

method), 70
set_layout() (asciimat-

ics.widgets.checkbox.CheckBox method),
73

set_layout() (asciimat-
ics.widgets.datepicker.DatePicker method),
74

set_layout() (asciimatics.widgets.divider.Divider
method), 76

set_layout() (asciimat-
ics.widgets.dropdownlist.DropdownList
method), 79

set_layout() (asciimat-
ics.widgets.filebrowser.FileBrowser method),
81

set_layout() (asciimatics.widgets.label.Label
method), 86

set_layout() (asciimatics.widgets.listbox.ListBox
method), 91

set_layout() (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
method), 93

set_layout() (asciimat-
ics.widgets.radiobuttons.RadioButtons
method), 101

set_layout() (asciimatics.widgets.text.Text method),
103

set_layout() (asciimatics.widgets.textbox.TextBox
method), 105

set_layout() (asciimat-
ics.widgets.timepicker.TimePicker method),
107

set_layout() (asciimat-

ics.widgets.verticaldivider.VerticalDivider
method), 109

set_layout() (asciimatics.widgets.widget.Widget
method), 111

set_scenes() (asciimatics.screen.Screen method),
156

set_scroll_pos() (asciimat-
ics.widgets.frame.Frame method), 84

set_scroll_pos() (asciimat-
ics.widgets.popupdialog.PopUpDialog
method), 96

set_scroll_pos() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
99

set_theme() (asciimatics.widgets.frame.Frame
method), 84

set_theme() (asciimat-
ics.widgets.popupdialog.PopUpDialog
method), 96

set_theme() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
99

set_title() (asciimatics.screen.Screen method), 156
ShootScreen (class in asciimatics.particles), 142
ShotEmitter (class in asciimatics.particles), 143
SHOW_CURSOR (asciimatics.parsers.Parser attribute),

132
Snow (class in asciimatics.effects), 124
SpeechBubble (class in asciimatics.renderers), 68
SpeechBubble (class in asciimat-

ics.renderers.speechbubble), 57
Splash (class in asciimatics.particles), 143
Sprite (class in asciimatics.effects), 125
StarExplosion (class in asciimatics.particles), 143
StarFirework (class in asciimatics.particles), 143
Stars (class in asciimatics.effects), 126
start_line (asciimatics.screen.Canvas attribute), 151
start_line (asciimatics.screen.Screen attribute), 156
start_line (asciimatics.screen.TemporaryCanvas at-

tribute), 160
start_line (asciimat-

ics.widgets.filebrowser.FileBrowser attribute),
81

start_line (asciimatics.widgets.listbox.ListBox at-
tribute), 91

start_line (asciimat-
ics.widgets.multicolumnlistbox.MultiColumnListBox
attribute), 94

StarTrail (class in asciimatics.particles), 144
startswith() (asciimatics.strings.ColouredText

method), 164
StaticRenderer (class in asciimatics.renderers), 58
StaticRenderer (class in asciimat-

ics.renderers.base), 46

Index 189

asciimatics Documentation, Release 1.13.1

stop_frame (asciimatics.effects.Background at-
tribute), 113

stop_frame (asciimatics.effects.BannerText attribute),
114

stop_frame (asciimatics.effects.Clock attribute), 115
stop_frame (asciimatics.effects.Cog attribute), 116
stop_frame (asciimatics.effects.Cycle attribute), 117
stop_frame (asciimatics.effects.Effect attribute), 118
stop_frame (asciimatics.effects.Julia attribute), 119
stop_frame (asciimatics.effects.Matrix attribute), 120
stop_frame (asciimatics.effects.Mirage attribute), 121
stop_frame (asciimatics.effects.Print attribute), 122
stop_frame (asciimatics.effects.RandomNoise at-

tribute), 123
stop_frame (asciimatics.effects.Scroll attribute), 124
stop_frame (asciimatics.effects.Snow attribute), 125
stop_frame (asciimatics.effects.Sprite attribute), 126
stop_frame (asciimatics.effects.Stars attribute), 127
stop_frame (asciimatics.effects.Wipe attribute), 128
stop_frame (asciimatics.particles.DropScreen at-

tribute), 133
stop_frame (asciimatics.particles.Explosion at-

tribute), 134
stop_frame (asciimatics.particles.PalmFirework at-

tribute), 136
stop_frame (asciimatics.particles.ParticleEffect at-

tribute), 137
stop_frame (asciimatics.particles.Rain attribute), 139
stop_frame (asciimatics.particles.RingFirework at-

tribute), 140
stop_frame (asciimatics.particles.SerpentFirework

attribute), 142
stop_frame (asciimatics.particles.ShootScreen at-

tribute), 143
stop_frame (asciimatics.particles.StarFirework at-

tribute), 144
stop_frame (asciimatics.sprites.Arrow attribute), 161
stop_frame (asciimatics.sprites.Plot attribute), 162
stop_frame (asciimatics.sprites.Sam attribute), 163
stop_frame (asciimatics.widgets.frame.Frame at-

tribute), 84
stop_frame (asciimat-

ics.widgets.popupdialog.PopUpDialog at-
tribute), 96

stop_frame (asciimat-
ics.widgets.popupmenu.PopupMenu attribute),
99

StopApplication, 130
style (asciimatics.utilities.BoxTool attribute), 165
switch_focus() (asciimatics.widgets.frame.Frame

method), 84
switch_focus() (asciimat-

ics.widgets.popupdialog.PopUpDialog
method), 96

switch_focus() (asciimat-
ics.widgets.popupmenu.PopupMenu method),
99

T
TemporaryCanvas (class in asciimatics.screen), 157
text (asciimatics.widgets.button.Button attribute), 71
text (asciimatics.widgets.label.Label attribute), 86
Text (class in asciimatics.widgets.text), 101
TextBox (class in asciimatics.widgets.textbox), 104
THEMES (in module asciimatics.widgets.utilities), 108
TimePicker (class in asciimatics.widgets.timepicker),

106
title (asciimatics.widgets.frame.Frame attribute), 84
title (asciimatics.widgets.popupdialog.PopUpDialog

attribute), 96
title (asciimatics.widgets.popupmenu.PopupMenu at-

tribute), 99

U
unicode_aware (asciimatics.screen.Canvas at-

tribute), 151
unicode_aware (asciimatics.screen.Screen attribute),

156
unicode_aware (asciimat-

ics.screen.TemporaryCanvas attribute), 160
update() (asciimatics.effects.Background method),

113
update() (asciimatics.effects.BannerText method), 114
update() (asciimatics.effects.Clock method), 115
update() (asciimatics.effects.Cog method), 116
update() (asciimatics.effects.Cycle method), 117
update() (asciimatics.effects.Effect method), 118
update() (asciimatics.effects.Julia method), 119
update() (asciimatics.effects.Matrix method), 120
update() (asciimatics.effects.Mirage method), 121
update() (asciimatics.effects.Print method), 122
update() (asciimatics.effects.RandomNoise method),

123
update() (asciimatics.effects.Scroll method), 124
update() (asciimatics.effects.Snow method), 125
update() (asciimatics.effects.Sprite method), 126
update() (asciimatics.effects.Stars method), 127
update() (asciimatics.effects.Wipe method), 128
update() (asciimatics.particles.DropEmitter method),

132
update() (asciimatics.particles.DropScreen method),

133
update() (asciimatics.particles.Explosion method),

134
update() (asciimatics.particles.ExplosionFlames

method), 134
update() (asciimatics.particles.PalmExplosion

method), 135

190 Index

asciimatics Documentation, Release 1.13.1

update() (asciimatics.particles.PalmFirework
method), 136

update() (asciimatics.particles.ParticleEffect
method), 137

update() (asciimatics.particles.ParticleEmitter
method), 138

update() (asciimatics.particles.Rain method), 139
update() (asciimatics.particles.RainSource method),

139
update() (asciimatics.particles.RingExplosion

method), 139
update() (asciimatics.particles.RingFirework

method), 140
update() (asciimatics.particles.Rocket method), 141
update() (asciimatics.particles.SerpentExplosion

method), 141
update() (asciimatics.particles.SerpentFirework

method), 142
update() (asciimatics.particles.ShootScreen method),

143
update() (asciimatics.particles.ShotEmitter method),

143
update() (asciimatics.particles.Splash method), 143
update() (asciimatics.particles.StarExplosion

method), 143
update() (asciimatics.particles.StarFirework method),

144
update() (asciimatics.particles.StarTrail method), 145
update() (asciimatics.sprites.Arrow method), 161
update() (asciimatics.sprites.Plot method), 162
update() (asciimatics.sprites.Sam method), 163
update() (asciimatics.widgets.button.Button method),

71
update() (asciimatics.widgets.checkbox.CheckBox

method), 73
update() (asciimatics.widgets.datepicker.DatePicker

method), 75
update() (asciimatics.widgets.divider.Divider

method), 77
update() (asciimatics.widgets.dropdownlist.DropdownList

method), 79
update() (asciimatics.widgets.filebrowser.FileBrowser

method), 81
update() (asciimatics.widgets.frame.Frame method),

84
update() (asciimatics.widgets.label.Label method), 86
update() (asciimatics.widgets.layout.Layout method),

89
update() (asciimatics.widgets.listbox.ListBox

method), 91
update() (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

method), 94
update() (asciimatics.widgets.popupdialog.PopUpDialog

method), 96

update() (asciimatics.widgets.popupmenu.PopupMenu
method), 99

update() (asciimatics.widgets.radiobuttons.RadioButtons
method), 101

update() (asciimatics.widgets.text.Text method), 103
update() (asciimatics.widgets.textbox.TextBox

method), 106
update() (asciimatics.widgets.timepicker.TimePicker

method), 108
update() (asciimatics.widgets.verticaldivider.VerticalDivider

method), 110
update() (asciimatics.widgets.widget.Widget method),

112
update_widgets() (asciimat-

ics.widgets.layout.Layout method), 89

V
value (asciimatics.widgets.button.Button attribute), 71
value (asciimatics.widgets.checkbox.CheckBox at-

tribute), 73
value (asciimatics.widgets.datepicker.DatePicker at-

tribute), 75
value (asciimatics.widgets.divider.Divider attribute),

77
value (asciimatics.widgets.dropdownlist.DropdownList

attribute), 79
value (asciimatics.widgets.filebrowser.FileBrowser at-

tribute), 81
value (asciimatics.widgets.label.Label attribute), 86
value (asciimatics.widgets.listbox.ListBox attribute), 91
value (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

attribute), 94
value (asciimatics.widgets.radiobuttons.RadioButtons

attribute), 101
value (asciimatics.widgets.text.Text attribute), 103
value (asciimatics.widgets.textbox.TextBox attribute),

106
value (asciimatics.widgets.timepicker.TimePicker at-

tribute), 108
value (asciimatics.widgets.verticaldivider.VerticalDivider

attribute), 110
value (asciimatics.widgets.widget.Widget attribute),

112
VBarChart (class in asciimatics.renderers), 61
VBarChart (class in asciimatics.renderers.charts), 49
VerticalDivider (class in asciimat-

ics.widgets.verticaldivider), 108
VScale (class in asciimatics.renderers), 68
VScale (class in asciimatics.renderers.scales), 57

W
wait() (asciimatics.paths.Path method), 146
wait_for_input() (asciimatics.screen.Screen

method), 157

Index 191

asciimatics Documentation, Release 1.13.1

Widget (class in asciimatics.widgets.widget), 110
width (asciimatics.widgets.button.Button attribute), 71
width (asciimatics.widgets.checkbox.CheckBox at-

tribute), 73
width (asciimatics.widgets.datepicker.DatePicker at-

tribute), 75
width (asciimatics.widgets.divider.Divider attribute),

77
width (asciimatics.widgets.dropdownlist.DropdownList

attribute), 79
width (asciimatics.widgets.filebrowser.FileBrowser at-

tribute), 81
width (asciimatics.widgets.label.Label attribute), 86
width (asciimatics.widgets.listbox.ListBox attribute), 91
width (asciimatics.widgets.multicolumnlistbox.MultiColumnListBox

attribute), 94
width (asciimatics.widgets.radiobuttons.RadioButtons

attribute), 101
width (asciimatics.widgets.text.Text attribute), 103
width (asciimatics.widgets.textbox.TextBox attribute),

106
width (asciimatics.widgets.timepicker.TimePicker at-

tribute), 108
width (asciimatics.widgets.verticaldivider.VerticalDivider

attribute), 110
width (asciimatics.widgets.widget.Widget attribute),

112
Wipe (class in asciimatics.effects), 127
with_traceback() (asciimat-

ics.exceptions.Highlander method), 129
with_traceback() (asciimat-

ics.exceptions.InvalidFields method), 129
with_traceback() (asciimat-

ics.exceptions.NextScene method), 129
with_traceback() (asciimat-

ics.exceptions.ResizeScreenError method),
130

with_traceback() (asciimat-
ics.exceptions.StopApplication method),
130

wrapper() (asciimatics.screen.Screen class method),
157

192 Index

	Introduction
	Why?
	Installation
	Quick start guide

	Contributing
	Getting started
	Building The Documentation
	Running The Tests

	Basic Input/Output
	Creating a Screen
	Output
	Refreshing the Screen
	Input
	Screen Resizing
	Scraping Text
	Drawing shapes
	Unicode drawing

	Advanced Output
	Rendering
	Static colour codes
	Experimental

	Animation
	Scenes and Effects
	Timing Effects
	Sprites and Paths
	Particle Systems
	CPU Considerations
	Using async frameworks

	User Interfaces
	Introduction
	Model/View Design
	Displaying your UI
	Setting values
	Getting values
	Flow of control
	Data handling
	Dynamic scenes
	Custom widgets

	Troubleshooting
	Installation issues
	My application only runs on Windows
	256 colours not working
	My colours are wrong
	The color theme resets when I resize the terminal
	Mouse support not working
	Windows title does not change
	Why can’t I detect all key combinations?
	Ctrl+S does not work
	Backspace or delete are not working
	There’s a big delay when I press Escape
	I can’t run it inside PyCharm or other IDEs
	It runs differently/does not work inside PyCharm
	Unicode characters are not working
	Redirecting STDIN
	It’s just not working at all
	It’s too slow!

	asciimatics
	asciimatics package

	Indices and tables
	Python Module Index
	Index

